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ABSTRACT

In this thesis, I study the topic of incentive design in the general scope of digital economic

platforms, with the motivation for the reliability and sustainability with economic incentives,

i.e., making sure that the systems would operate in the way we expect and also achieve socially

desirable outcomes, even in the presence of selfish and possibly adversarial participants,

spanning the fields from traditional e-commerce platforms to frontier applications of

blockchain and decentralized AI ecosystems.

On the traditional side, I investigate the allocation and pricing of ridesharing platforms,

designing a mechanism that both ensures desirable revenue of the drivers and also guarantees

the fairness issue among drivers who are allocated different routes and among riders who have

different valuations (i.e., willingness-to-pay) on the rides, with flow optimization techniques

under the uncertainty of incoming orders, with the motivation to achieve user friendliness

without loss of revenue (Chapter 3).

On the frontier side, I study a spectrum of incentive problems in decentralized

platforms, from fundamental designs of blockchain transaction fee mechanisms to futuristic

decentralized AI ecosystems. In the scope of transaction fee mechanism design, I designed a

refined auction-like mechanism that incentivizes users (i.e., buyers of the blockchain space)

to bid their true valuation and miners (i.e., sellers) to truthfully process the protocol, even in

an anonymous environment in which they have the freedom to deviate. This study utilized

a Bayesian game model to bypass existing negative results, and achieving constant factor

approximation of optimal revenue (Chapter 4).

In the scope of decentralized AI, which is still immature in current real-world applications,

my study focuses on the economic foundations of decentralized consensus, aiming to

incentivize honest participation of both provers (e.g., model trainers) and verifiers. In this
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study, I first develop a Proof-of-Learning (PoL) protocol with interactions between provers

and verifiers that, assuming the honesty of verifiers, incentivizes provers to training the model

honestly to get token rewards, as a substitution of traditional energy-consuming Proof-of-

Work (PoW) puzzles, thus simultaneously utilizing blockchain security features to ensure

the trustworthiness of AI models, and utilizing AI model training to make the blockchain

more energy-efficient, fostering the reliability and sustainability of decentralized AI systems

with economic incentives (Chapter 5).

However, ensuring incentives for verifiers becomes highly non-trivial when verification

is costly. In the final technical part of this thesis, I develop a variation of peer

prediction mechanisms that addresses the long-standing Verifier’s Dilemma that verifiers are

incentivized to lazily accept the proof without actual verification. While traditional work

usually resort to partial centralization, this study delves into the incentives of decentralized

verification games and propose to reward or penalize verifiers based on the comparison

of their reports with each other. With theoretically guaranteed optimization schemes on

robust peer prediction mechanisms, this design can ensure incentive guarantees for verifiers

even under noisy verification processes and without centralized ground truth. By resolving

the critical Verifier’s Dilemma, this work establishes an economic foundation for, and

demonstrates the practical feasibility of, fully decentralized and trustworthy AI ecosystems

(Chapter 6).
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CHAPTER 1

INTRODUCTION

Those who are not ken to fire cannot paint a world;

Those absorbed by fire, must not paint a world.

— Dark Souls III

The digital economy, as an emerging field thriving with the development of digital

platforms, has become a main driving force of the global economy. The low cost and high

throughput of digital platforms have fostered the efficiency and convenience of economic

activities. During the COVID-19 pandemic from 2020 to 2023, in which contactless activities

are direly desired for disease prevention, the trend of prevalence of online platforms has been

accelerated to a new level, and the digital economy has currently become an essential part of

everyday life. Since late 2022, the emergence of large language models (LLMs) and visions

of artificial general intelligence (AGI) render the digital platforms more of everyday tools in

our life.

Along with the development of modern society, incentives are the backbone of economic

systems. A system without well-designed incentives cannot sustain itself. However, excessive

focus on short-term profits and capital accumulation can lead to market inefficiencies and

systemic risks. This thesis investigates how incentive design can serve as a fundamental

tool to align individual rationality with collective welfare in self-organized digital platforms,

ensuring that such systems remain reliable and sustainable in real-world applications.

Based on the nature of different platforms, the family of digital economy roughly

consists of two classes: centralized systems, in which the entire system is governed and

controlled by a centralized and usually trusted entity (e.g., e-commerce platforms), and

decentralized systems, in which no such centralized entity exists and the system must be
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maintained by consensus among the users who can be rational and selfish (e.g., blockchain

systems). Moreover, some digital platforms exhibit a hybrid structure, incorporating both

centralized and decentralized elements. For example, in ridesharing platforms, the pricing is

implemented via a centralized algorithm, but the drivers and riders interact in a decentralized

manner. To make the digital economy work effectively and appropriately for the society, the

ecosystems are generally faced with the challenges of reliability and sustainability as follows:

• Reliability: the digital environment may be subject to dishonest actions and adversarial

attacks, especially for blockchain and other anonymous platforms on which fake

identities and collusions may occur; the users of the platforms may also behave

strategically and deviate from desired behavior, potentially affecting the system’s

reliability. The reliability issue mainly occurs in decentralized platforms, because the

absence of centralized governance may introduce additional complication that challenge

the reliability of the systems.

• Sustainability: the digital platforms innately allow more exploitation of users’

data for revenue optimization, which may lead to privacy and fairness issues and

undermine long-term social welfare; the platforms may also have inefficiency in resource

consumption and carbon footprint, which draws concern in the aspect of environmental

sustainability. The sustainability issue occurs in both centralized and decentralized

platforms, but can be more prominent in centralized platforms because the centralized

entity may be selfish and optimize their own interest at the cost of social and

environmental responsibilities.

Intuitively, a reliable system will run in the expected way in realistic conditions, and

a sustainable system, when running as expected, will achieve good societal outcomes
in the long term.

As AI systems become an integral part of digital platforms, they inherit and amplify the

challenges of reliability and sustainability. These challenges are closely related to the topic of

AI safety. In this context, reliability is related to AI security that ensures resilience against

malicious attacks (“it works as expected”), and sustainability is related to AI alignment that
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ensures alignment between the AI models and human welfare (“given it works as expected,

it does good things”).

In light of the new emerging concerns and challenges, in this thesis, I am aimed at the

incentive design of digital platforms in the presence of strategic agents, with an ultimate

goal of incentivizing agents into truthful behavior, and fostering economic efficiency, ethical

responsibility, and environmental sustainability for the thriving of the new-era digital

economy and AI platforms.

1.1 Motivations

1.1.1 Reliability of Digital Platforms

In general, this research studies the interdisciplinary area of mechanism design and system

design, which are traditionally considered to lie in different research fields. However,

although in different terminologies, the two areas share an essential aspect in common:

to design a desired mechanism/system that prevents or minimizes the influence of “bad”

behavior. In system design, the “bad” behavior are usually described as malicious or

dishonest and regarded as attacks that violate certain rules; in mechanism design, the “bad”

behavior are instead described as untruthful and “less evil” — they are not violating any

rule and are sometimes even designed to happen, for example, in first-price auctions that

are prevalently used in advertisement markets.

Indeed, the existence of untruthful mechanisms, especially first-price (or more generally,

pay-as-bid) auctions, shows to us that in a “good” mechanism, it can be okay to allow

untruthful behavior to exist. On the other hand, my research argues that it also can be okay

not to.

The theoretical foundation of my argument is the revelation principle: informally, given

that the system has no less information than agents, we can always calculate agents’ optimal

strategies and incorporate them into the mechanism itself, so that agents only need to report

their true type and no longer need to play the strategies. Arguably, the truthful design

also makes the system more user-friendly since it saves the users’ efforts to find out the
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optimal strategies — and more welcomed by users with minimized additional computational

or cognitive costs.

From this argument, for a desired mechanism we can still regard untruthful strategies

as “unwanted”, and thus the truthfulness property becomes similar to security. However,

the traditional notion of security is still stronger than truthfulness: in a systematic view, a

(byzantine-)secure system needs to prevent malicious attackers who would try to corrupt the

system at all (as long as reasonable, e.g. polynomial) costs, but in the view of mechanism

design, the truthfulness notion only requires us to prevent untruthful behaviors from earning

additional utility, or in other words, secure against rational attackers.

In this thesis, which blurs the boundary between computer systems and economic

mechanisms, we widely adopt a weaker form of incentive security that describes a system

that is reliable against rational attackers. Technically, the reliability properties we seek for

digital platforms consist of:

• Incentive compatibility: In a game, any agent would maximize their expected utility

when they truthfully report their types (e.g. valuation, observation, etc.).

• Incentive security: In a system, any agent would not benefit from dishonest actions

that deviate from the protocol (e.g. creating fake identities, not doing the verification

as supposed to, etc.)

The general idea of relaxing Byzantine security notions to incentive security, is that

it can expand feasible regions of mechanism design substantially while respecting human

nature, especially when the design of Byzantine-secure systems is faced with theoretical

or practical difficulties in complicated real-world applications. Intuitively, in the scope of

Byzantine security, milder attacks are usually more elusive to detection and on the hard end

of prevention, but from an economic perspective, such mild attacks may do less harm to the

system and thus can be tolerated to some extent (as an example, Chapter 5). Hence, we can

avoid the overkill via bypassing existing hardness results and still develop socially reliable

systems.

In practical applications, the difference between definitions of incentive compatibility

and incentive security is subtle. In most traditional literature on mechanism design, the
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action space of players only includes “reporting”: for example, bidding a price in auction

or reporting a type in information elicitation; in this scope, the concept of incentive

compatibility means that the mechanism can incentivize rational players to truthfully

report their private information. However, in more complicated mechanisms in modern

digital economy, particularly blockchain and decentralized AI, the action space of players

usually contains private execution of computational tasks, in which the players need to pay

computational cost to get the information. Hence, in an incentive-secure design, we not only

need to incentivize truthful reporting, but also truthful computation. In this interpretation,

we can understand incentive security as a generalization of incentive compatibility in such

complicated contexts.

On a high level, we are generally motivated to design reliable incentive structures to

incentivize all agents to behave “in a correct/expected way”. Hence, in this thesis we do not

distinguish the meaning of terms incentive compatibility, incentive security and truthfulness,

and use them interchangeably. From these notions, we are primarily motivated to design

economically reliable digital platforms that run robustly in the presence of selfish but rational

participants.

1.1.2 Sustainability of Digital Economy

In the digital economy’s modern internet platforms, sustainability has emerged as a crucial

issue. This importance stems from the platforms’ ability to leverage big data, enabling

them to exploit additional resources for optimizing revenue. Such resources include user

data, energy, and carbon footprint. Broadly speaking, sustainability in this context can be

generally interpreted as “no-over-exploitation” of resources and categorized into two main

areas: social and environmental.

Social sustainability. In the information era, as the service provider may have more

personal data on preferences and demands, they can utilize the information for dynamic

and personalized pricing in pursuit of maximal revenue. While the price discrimination is

not innately unlawful, it may indeed be harmful to long-term social interest if it leads to

systematic discrimination on certain groups, e.g. ethnicity, gender, location and so on, and
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these types of discrimination, either on purpose or not, may also be prohibited by law and

should be avoided by the algorithm designers. In light of this concern, my research studies

fairness problems for e-commerce and ridesharing platforms with heterogeneous customers

and designs algorithms with fairness guarantees in the meantime of revenue optimization,

thus balancing short-term economic rewards and long-term social good into a win-win

situation.

Environmental sustainability. The issue of over-exploitation does not only occur in

the social aspect but also from an environmental perspective. Particularly, as the huge

and inefficient energy consumption and carbon footage in Bitcoin Proof-of-Work (PoW)

mining has drawn worldwide concern and criticism, we are particularly motivated to design a

Proof-of-Useful-Work (PoUW) consensus mechanism to resolve the sustainability issue while

preserving the security of PoW in new-concept blockchain systems, while also proposing a

possible framework of decentralized computing power market for AI.

Although the term “sustainability” is wide-ranging and can apply to various fields beyond

my thesis, my research primarily focuses on the following aspects of sustainability:

• Fairness: Within an economic platform that serves a diverse clientele, it’s essential to

ensure equitability on pricing and/or allocation across different groups or individuals.

• Energy efficiency: In computation-intensive algorithms, the energy expended should

meaningfully contribute to real-world applications.

1.2 Research Summary

This thesis is based on papers [2, 3, 4, 5]. Zhao et al. [2] studies the dispatching and

pricing problem of ridesharing platforms and designs a mechanism with incentive security

and fairness guarantees while achieving revenue optimality (Chapter 3). Chen et al. [3]

studies the problem of transaction fee mechanism design in blockchains. With the novel

proposal of the auxiliary mechanism method, which generalizes to the methodology of

parametric mechanism optimization (See in Chapter 2), this design provides a truthful

and collusion-proof mechanism in a Bayesian setting that bypasses existing impossibility
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results for dominantly-IC mechanisms, which achieve the goals of incentive compatibility

and incentive security (Chapter 4). Zhao et al. [4] designs a Proof-of-Learning mechanism

that allows miners to run ML training instead of hash puzzles for PoW challenges, which can

overcome the energy wastefulness of PoW mechanisms and potentially foster a computational

power market for AI. This project achieves my goals of incentive security and energy efficiency

for the blockchain system and trustworthy AI platforms (Chapter 5). Zhao et al. [5] designs

a variant of peer prediction mechanism to incentivize blockchain verifiers to honestly do the

possibly costly verification in an anonymous and decentralized environment, presenting a

general-purposed solution for the Verifier’s Dilemma even if the fraction of dishonest cheaters

can be arbitrarily small. This project would achieve my goals of incentive security and

incentive compatibility for blockchain and decentralized AI systems (Chapter 6).

In my thesis research, I am connecting between futuristic and realistic visions: on the

futuristic side, I delve into fundamental parts of blockchain consensus mechanisms and realize

better systematic reliability and sustainability for the future development of Web3 and

decentralized AI ecosystems; on the realistic side, I also study the traditional topic of data-

driven mechanism design for the realization of full potentials in traditional e-commerce and

contemporary AI platforms. By comprehensive research on a spectrum from traditional to

frontier topics in digital economy, I aim to leverage the tools of game theory, mechanism

design, and optimization, to empower and safeguard the economic foundations of the modern

digital world.
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CHAPTER 2

METHODOLOGY OF PARAMETRIC MECHANISM
OPTIMIZATION

In a wide family of mechanism design studies, the common paradigm is to “construct

and analyze”: we construct a mechanism directly and then show that it satisfies desired

properties. For example, in the second-price auction [6], we define the allocation and

payment rules as “the highest bidder wins the item and pays the second highest bid,” and

then prove that it satisfies dominant-strategy incentive compatibility (DSIC); furthermore,

we can analyze its social welfare and revenue, showing that it achieves optimal social welfare,

and optimal revenue among all auctions in which the item must be sold (via the revenue

equivalence theorem [7]). Similarly, in peer prediction literature (e.g., [8, 9, 10]), the authors

usually propose scoring rules directly and prove their incentive guarantees in corresponding

settings.

While the “construct and analyze” paradigm is intuitive and straightforward to design

feasible mechanisms satisfying conventional constraints (e.g. incentive compatibility), there

can be more challenges when the constraints are more complicated and/or we want to design

mechanisms that additionally satisfy certain sorts of optimality. That is to say,

• When there are additional constraints that involve in the structure, the traditional

design may not satisfy such additional constraints and directly finding out an

alternative feasible solution may not be easy.

• While there exist multiple mechanisms that satisfy the feasibility requirements, it may

be difficult to directly find out mechanisms with different kinds of optimality (e.g.,

robustness, revenue, or social welfare) guarantees.

In this thesis, I for seek another paradigm that compiles the mechanism design task

as an optimization problem that optimizes the desired objective under the incentive (and
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possibly other) constraints. Nevertheless, compared to standard optimization problems

(e.g., linear programming), the decision space Ω of mechanism design (e.g., mapping bids

into payments) can be complicated, infinite-dimensional, and difficult to solve directly via

standard optimization tools. In context, we denote F ⊆ Ω to be the set of all feasible

mechanisms, and φ : Ω→ R is the objective function we want to optimize. Without loss of

generality, the mechanism optimization can be formulated as:

minimize φ(m) (2.1)

s.t. m ∈ F. (2.2)

In my thesis research, I first propose the auxiliary mechanism method to design collusion-

proof blockchain transaction fee mechanisms (TFM) in [3], which can be further developed

into a general methodology of parametric mechanism optimization. In this paradigm, I

construct a linear or affine subspace V ⊆ Ω which can be parametrized into a vector form,

induced by a bijective mapping f : Rd ↔ V . Then, we perform the optimization in the

underlying parametric space Rd, with an objective function φ◦f and feasible region f−1(F ∩

V ), formulated as:

minimize (φ ◦ f)(v) (2.3)

s.t. v ∈ f−1(F ∩ V ). (2.4)

We can see that the parameterized optimization problem actually finds a mechanism

f(v∗) ∈ arg min{φ(m) : m ∈ F ∩V }. Hence, if V is a “representative” subspace of Ω, we can

indeed find a near-optimal mechanism in this way. While the construction of the parameter

space V can be tricky, it is at least more tractable than finding out a desirable mechanism

directly.

Taking the auxiliary mechanism method in [3] as an example, the technique of auxiliary-

variation decomposition is based on the fact that all User Bayesian-Nash Incentive
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Compatible (U-BNIC) transaction fee mechanisms lie in an affine space M +T , in which M

is a unique U-DSIC mechanism and T is a linear space of all variation terms that does not

affect the users’ interim (expected) payments among the distribution of other users. From

the linearity of the constraints, we can also see that the space of 1-SCP mechanisms lies in

an affine space M + U in which U is also a linear space of variation terms. Hence, to find

a U-BNIC and 1-SCP mechanism with good revenue, we are actually trying to optimize the

revenue R(M̃) in the space of M̃ ∈ (M + T ∩U ).

In the auxiliary mechanism method, we actually find out a basic variation term T ∈ T ∩U

(as in [3]), which induces a one-dimensional affine subspace V = {M + hT : h ∈ R} ⊆

(M + T ∩ U ) and a natural parameterization f(h) = M + hT . Then, we “compile” the

U-BNIC and 1-SCP conditions into the parameterization f and ensure that ∀h ∈ R, f(h) is

a U-BNIC and 1-SCP mechanism. Afterwards, we can perform the parametric optimization

with the decision variable h under the constraints induced by other constraints of TFM design

(e.g., individual rationality, budget feasibility, etc.), and manage to find out a feasible h that

realizes constant approximation of the optimal miner revenue.

This technique is also used in the compactness (robustness) bounds in my work [5]. In

this study, we desire to construct a compact δ-incentive-aligned (δ-IA) scoring matrix T with

a given incentive margin δ and as small magnitudes (maximum absolute values among all

elements) as possible. Hence, the problem can be modeled as a linear program to minimize

max{|Txy|} under a family of linear incentive constraints.

To upper bound the optimal objective value, I also deal with the basic incentive conditions

and the δ incentive margin separately. Hence, we also construct a parameterization f : R→

Ω that f(δ) = Tc + δTδ is a δ-IA scoring rule as long as δ ≥ 0. Furthermore, we can also

upper bound the scoring magnitude (K ◦ f)(δ) ≤ Kc + δKδ, and thus we can lower bound

the compactness corresponding to the parameter δ as:

δ

K
≥ δ

Kc + δKδ

. (2.5)

Then with this parameterization, we can build connections between incentive margins and

all specifications (compactness, robustness, budget, etc.) In this way, we can “customize”
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scoring rules to satisfy different requirements and analyze corresponding performances via

tuning the parameter δ with convenience.

It is worth noting that this methodology is particularly useful for adoption of online

learning tools in the field of mechanism design. On the one hand, in the canonical modeling

of multi-armed bandits, if we model every mechanism as an arm, the technique of parametric

mechanism optimization can help construct a parametric arm space; on the other hand,

since the convergence rate in online learning studies usually involves the estimation of

error distributions, the parametric space for mechanism design also provides tools for

robust mechanism design that preserves its desirable properties (e.g., truthfulness) under

uncertainties in statistical estimation from data.
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CHAPTER 3

DISPATCHING AND PRICING FOR RIDESHARING
PLATFORMS

3.1 Introduction

Ridesharing is a novel form of sharing economy that utilizes mobile apps to match drivers

and riders to allow riders to take trips conveniently and make profits for drivers. Compared

to traditional taxi platforms, ridesharing platforms enable riders to put orders on the system

in advance of the trip for drivers to take, so that the system can optimally plan the rides

to make it more efficient. Previous studies on planning algorithms for ridesharing platforms

adopt a variety of methodologies including combinatorial optimization [11], reinforcement

learning [12], or both [13]. However, planning trips only in the centralized way does not

guarantee that each individual driver and rider has the incentive to obey the plan, which

calls for efficient and fair pricing mechanisms so that following the plan will be “happy” for

each party and maximize their utilities.

The pricing mechanism for taxi platforms depends on distance and waiting time, but it

is too simple to either well represent the cost of drivers or match the supply and demand,

which may result in dissatisfaction on both sides and lead to refusal of trips. For example, a

rider wants to take an important trip with a short distance and a low price. However, there

is a traffic jam and it may take a long time for the driver to cover the trip. This situation

will create an opportunity cost that discourages the driver to accept the order. Were the

charged price higher, the rider would probably not mind the slight increase of cost but the

driver will be satisfied to accept the trip, which benefits both parties. However, we should be

careful about the price adjustment: if two friends take the same trip, but at different prices,

the one who takes the trip with a higher price may “envy” the other and will be dissatisfied

with the platform. This issue may also apply to the drivers: if two drivers initially at the
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same time and location are assigned different trips that earn different profits, the driver with

lower profit would also be dissatisfied with the platform. Therefore, to make the platform

satisfied by each agent, the algorithm should be “envy-free” (as in Definition 5). Another

important property is “subgame-perfect Nash equilibrium”, which means that each driver is

assigned with a plan, following which he/she can get the best utility among all alternative

actions given others’ actions are fixed, so that no driver has the incentive to deviate from

the plan (as in Definition 4).

In this paper, we propose a fairness-aware algorithmic framework for dynamic car

dispatching and pricing, which consists of the following three-fold contributions:

1. We study the computational complexity of the task of dispatching and pricing for total

revenue maximization, propose a versatile generalized network flow model for the task,

and provide theoretical guarantees (Section 3.3).

2. We propose a novel two-phase pricing mechanism that decouples and sets different

prices on drivers’ and riders’ sides, which can adapt to situations where the drivers’

and riders’ interests misalign1 and guarantee fairness for both parties (Section 3.4).

3. We consider the stochastic nature of ridesharing orders and study the online learning

setting. We natural extend the model to the stochastic setting (Section 3.5),

enabling the use of Thompson sampling-based algorithm to learn the valuation

distributions from the partial information given by the riders’ responses, and balance

the exploration-exploitation trade-off (Appendix A.5).

Finally, in Section 3.6, we perform extensive experimental evaluations of our assumptions

and algorithms in the real-world datasets and demonstrate the effectiveness of our methods.

We have also shown that our algorithm runs in polynomial time. Please refer to Section 3.7

for detailed complexity analysis.
1Please see the illustrative example in Appendix A.3.
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3.1.1 Related Works

There are several related works in the existing literature. Bei and Zhang [11], Qin et al.

[13], Wang et al. [14] study how to dispatch the drivers efficiently in a centralized way, and

Li et al. [12], Hrncir et al. [15] study the dispatching problem via multiagent systems, but

they do not consider pricing which is essential for the application in platforms. Riquelme

et al. [16] study optimal pricing via queue theory, but they assume a single location, which is

too simple for application. Castillo et al. [17] discuss the phenomenon of “wild goose chase”

in which drivers spent most time driving to take a distant order in unbalanced supply and

demand, and propose the method of adjusting price to avoid its detriment to efficiency, but

they do not consider fairness. Bimpikis et al. [18] look into the effects of pricing to supply-

demand balance, revenue and consumers’ surplus, but adopt an over-simplified model of n

pairwise equidistant locations, which is not even geometrically possible for large n. Yan

et al. [19] also provide an algorithm for dynamic matching and pricing, but the matching

and pricing algorithms are decoupled, making the performance suboptimal. In particular, a

recent work [20], which shares a similar motivation as our work, studies how to maximize

social welfare, i.e. the summation of riders’ valuations minus drivers’ costs among all trips,

via an bidding-based dispatching and pricing algorithm. In that paper, each rider should

bid a maximally acceptable price for them, and the truthful mechanism guarantees that it

is in each rider’s interest to report their true valuation. However, there are some gaps from

their mechanism to the reality. First of all, it is not practical for riders to bid their valuation

like an auction. Second, the mechanism maximizes total social welfare, not drivers’ revenue,

but ride-sharing platforms are indeed interested in their profits. Also, it assumes that all

future orders is known at the beginning, which is not realistic. In contrast, our algorithm

optimizes the total revenue via dynamically learning the order distribution from the riders’

responses on our carefully designed prices.
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3.2 Preliminaries

We assume the service zone is divided into a family L of discrete locations, and the planning

horizon is a family T of discrete time slots. Therefore, there are |L| · |T | spatiotemporal

states, denoted by S = L× T .

We also assume that the travelling time from one state s = (l, t) ∈ S to another location

s′ is deterministically defined by the known function δ(l, l′, t) ∈ Z+. We call each pair of the

spatiotemporal states (s, s′) a spatiotemporal arc. For each s = (l, t) and s′ = (l′, t′), we say

the arc (s, s′) is admissible if t′ ≥ t+ δ(l, l′, t). We denote by Q the set of all admissible arcs.

Each admissible arc (s, s′) ∈ Q is associated with a known deterministic cost c(s, s′) which

is incurred to any driver that drives along this arc. The order of the i-th rider is described

by an admissible arc (si, s
′
i) ∈ Q and a valuation vi which is the maximum amount the rider

would like to pay for the ride. Since vi is not revealed to the ridesharing platform, we call

oi = (si, s
′
i, vi) the i-th latent order, and denote R = {oi, ∀i} the set of latent orders.

The task of the scheduling algorithm for the ride-sharing platform involves the decision of

a rider-side pricing function p : S × S → [0,+∞) (which has to be independent of the rider

to ensure envy-freeness). For each rider i with latent order oi = (si, s
′
i, vi), the scheduling

algorithm offers the price p(si, s′i). The rider only accepts the offer if vi ≥ p(si, s
′
i) in which

case the platform receives p(si, s′i) as income. Serving the order also incurs the driver cost

according to c(·, ·) along the arcs. After all trips, the drivers will leave the platform.

The first goal of the scheduling algorithm is to maximize the total revenue which is defined

to be the total income (collected from the riders) minus the total cost (incurred by the

drivers). Then, the second goal of the scheduling algorithm is to compute the driver-side

payment function y : S×S → [0,+∞) to distribute the income to the drivers in a subgame-

perfect and envy-free manner. (Note that the payment function also has to be independent

of the drivers to ensure envy-freeness.)

The above-described scheduling problem involves the complex optimization of multiple

sets of decision variables. The unknown latent order set introduces further challenges to

the task. To approach this complex problem, we will first consider the deterministic setting

where the latent order set R is fully revealed to the scheduling algorithm, and the scheduling
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problem becomes a pure static optimization task. Then, we assume that R is drawn from a

latent distribution, and design an online learning algorithm that simultaneously learns the

latent distribution and optimizes the total revenue.

In the following two sections, we describe each phase of the problem with more details

and mathematical rigor, and propose our algorithms to achieve the optimal policy.

3.3 Phase 1 of the Deterministic Setting: Maximum Revenue Car
Dispatching

In this section, we introduce our algorithm to the maximum revenue car dispatching problem

in the deterministic setting (i.e., when the set of latent orders R is known to the platform).

For convenience, we first introduce the following non-linearly weighted circulation (NLWC)

problem, and the maximum revenue car dispatching problem can be formulated based on

NLWC definition.

Definition 1. In the non-linearly weighted circulation (NLWC) problem, there is a directed

graph G = (V,E). For each directed edge e ∈ E, we associate it with the flow lower bound

ℓ(e), the flow upper bound u(e) and the reward function r(·; e) : N→ R. The goal is to find

a flow f : E → N so that f satisfies the flow upper and lower bounds (i.e., ℓ(e) ≤ f(e) ≤

u(e), ∀e ∈ E) and flow conservation (i.e.,
∑

e going out of s f(e) =
∑

e going into s f(e), ∀s ∈ V ),

and the total reward
∑

e∈E r(f(e); e) is maximized.

Observe that when the reward functions are linear (i.e., r(x; e) = w(e) · x), the

NLWC problem becomes the canonical minimum cost circulation problem, which admits

a polynomial time algorithm [21] (with the signs of the linear coefficients flipped).

With the formulation of the NLWC problem in place, we are ready to describe our

maximum revenue car dispatching problem in the deterministic setting. Here, we assume

that the platform knows all the riders’ information; i.e., for each rider i, we know that his/

her latent order oi = (si, s
′
i, vi). Based on this information, for each arc (s, s′) ∈ Q, we

calculate the number of latent orders following the arc and denote it by o(s, s′); then, for

each 1 ≤ i ≤ o(s, s′), we define vi(s, s′) to be the i-th largest valuation among all latent
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orders following (s, s′). Note that if the platform plans to accept k orders on the arc (s, s′),

to maximize the income, the price should be set as p(s, s′) = vk(s, s
′), and the total income

generated from this arc becomes k · vk(s, s′).

In light of the discussion above, we will construct a directed graph (V0, E0) so that the

maximum revenue car dispatching problem becomes calculating NLWC on the graph, where

the flow along each arc indicates the number of drivers the platform plans to dispatch.

We first let the vertex set V0 = S ∪ {I, O} where I is the artificial source and O is the

artificial sink; together, a directed edge eO,I that goes from O to I is set up with ℓ(eO,I) = 0

flow lower bound and u(eO,I) = +∞ flow upper bound and the constant-zero reward function:

r(·; eO,I) ≡ 0. We then set up the following sets of edges.

• (Initialize drivers.) For each spatiotemporal state s with ns initial drivers, we set

up a directed edge eI,s going from I to s with both flow upper and lower bounds equal

to ℓ(eI,s) = u(eI,s) = ns, and the constant-zero reward function r(·; eI,s) ≡ 0. The flow

f(eI,s) represents the number of drivers to start working from the state s.

• (Leaving drivers.) For any spatiotemporal state s, we set up a directed edge es,O
going from s to O with ℓ(es,O) = 0 lower bound, u(es,O) = +∞ upper bound, and the

constant-zero reward function r(·; es,O) ≡ 0. The flow f(es,O) represents the number

of drivers to leave the system at the state s.

• (Driving without a rider.) For any admissible arc (s, s′) ∈ Q, we set up a directed

edge e
(o)
s,s′ going from s to s′ with ℓ(e

(o)
s,s′) = 0 lower bound, u(e(o)s,s′) = +∞ upper

bound. The flow f = f(e
(o)
s,s′) represents the number of drivers to drive through the

arc (s, s′) without carrying a rider. Therefore, we set up the linear reward function

r(f ; e
(o)
s,s′) = −c(s, s′) · f .

• (Driving with a rider.) For any admissible arc (s, s′) ∈ Q, we set up a directed

edge e(w)
s,s′ going from s to s′ with ℓ(e

(w)
s,s′) = 0 lower bound, u(e(w)

s,s′) = o(s, s′) upper

bound. The flow f = f(e
(w)
s,s′) represents the number of drivers to drive through the arc

(s, s′) with a rider. Therefore, we define the non-linear reward function r(f ; e
(w)
s,s′) =

[vf (s, s
′)− c(s, s′)] · f .
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Given (V0, E0), the maximum revenue car dispatching problem in the deterministic setting

is equivalent to finding the optimal solution to NLWC on the directed graph (V0, E0).

Formally, we directly have the proposition below.

Proposition 3.1. Let f ∗ be the optimal solution to NLWC on the directed graph (V0, E0).

To achieve the maximum revenue in the car dispatching task, the platform may direct the

drivers to drive with/without carrying a rider or leave the platform based on the flow value on

the corresponding sets of edges. The total weight of f ∗ is the maximum revenue the platform

may collect.

Proposition 3.1 also enables us to design the routing plan for each individual driver based

on the NLWC solution. Formally, a route A = (a1, a2, . . . , az) is a sequence of spatiotemporal

arcs such that the ending state of each arc ai is the same as the beginning state of the next

arc ai+1 (for all i ∈ {1, 2, . . . , z − 1}). At each time step and for each driver q, the routing

plan Aq is just a route which starts at the driver’s current state.

While the general NLWC problem is computationally intractable, the maximum revenue

car dispatching problem, as a special case of NLWC, is unfortunately not easier. Formally,

we present the following negative result for the maximum revenue car dispatching problem.

The proof of Theorem 3.2 is deferred to Appendix A.1.1. Note that since maximum revenue

car dispatching is a special case, we may not directly use the NP-Hardness proof of NLWC,

and have to design a new hardness instance instead.

Theorem 3.2. The maximum revenue car dispatching problem, even in the deterministic

setting, is NP-hard.

On the positive side, we propose a natural regularity condition in Definition 2. We will

show that when the condition is satisfied, the maximum revenue car dispatching problem

can be solved in polynomial time.

Definition 2 (Regularity). We say that a maximum revenue car dispatching problem instance
satisfies the regularity condition if for each admissible spatiotemporal arc (s, s′), and each
k ∈ {1, 2, . . . , o(s, s′)}, the sequence v′k(s, s′) is monotonically non-increasing with k, where
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we define

v′k(s, s
′) :=

 v1(s, s
′) (k = 1)

k · vk(s, s′)− (k − 1)vk−1(s, s
′) (k ≥ 2)

.

In the definition, v′k(s, s′) can be interpreted as the marginal reward of accepting the k-th

highest price order on arc (s, s′). The regularity condition then requires that the marginal

reward sequence is not increasing with the increasing number of accepted orders on any arc,

which is a standard assumption in economics literature (see, e.g., [22, 23, 24]). Indeed, in

our empirical evaluation, we verify that the regularity condition holds in the real-world data.

We now present our edge decomposition algorithm (details in Algorithm 1) for the

maximum revenue car dispatching problem. At a higher level, Algorithm 1 first manages

to decompose each non-linear directed edge in (V0, E0) to a family of edges with linear

costs and creates a minimum linear-cost circulation problem instance (V0, Ẽ, ℓ̃, ũ,−w̃), then

invokes the existing polynomial-time time algorithm for the minimum linear-cost circulation

problem, and finally aggregates the flows in each family to construct the optimal solution to

the original problem.

In Algorithm 1, the edge set E1 denotes the edges corresponding to “driving with a rider”

and E2 the rest of the edges. We also observe that the only non-linear edges are the ones

to drive with a rider (in E1), while the rest edges (in E2) already have linear costs. For

the edges in E1, the algorithm decomposes them from Line 3 to Line 6: since the flow on

each edge in E1 represents the amount of the rider orders accepted along the corresponding

spatiotemporal arc, the algorithm assigns each decomposed edge with unitary capacity, and

the corresponding flow represents an additional order to be accepted along the arc, and

naturally the weight function is defined based on the marginal reward function v′k(·, ·). Also

note that the algorithm always returns an integral flow because of the integrality property

of the minimum linear-cost circulation problem. Regarding the theoretical guarantee of

Algorithm 1, we prove the following theorem:

Theorem 3.3. Algorithm 1 runs in polynomial time, and when the regularity condition is

met, the returned flow f achieves the maximum revenue of the car dispatching problem on
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Algorithm 1 The Edge Decomposition Algorithm
1: Construct the NLWC instance (V0, E0, ℓ, u, r);
2: E1 ← {e(w)

s,s′ ∈ E0}, E2 ← E0 − E1; Ẽ ← ∅;
3: for e(w)

s,s′ ∈ E1 do
4: for i ∈ {1, 2, . . . , o(s, s′)} do
5: Ẽ ← Ẽ ∪ e(w,i)

s,s′ ; (ℓ̃(e(w,i)
s,s′ ), ũ(e

(w,i)
s,s′ ))← (0, 1);

6: w(e
(w,i)
s,s′ )← r(i; e

(w)
s,s′)− r(i− 1; e

(w)
s,s′)

7: for e ∈ E2 do
8: Ẽ ← Ẽ ∪ e;

(
ℓ̃(e), ũ(e)

)
← (ℓ(e), u(e));

9: w̃(e)←
{
−c(s, s′) (if both s, s′ ∈ S)
0 (otherwise) ;

10: Invoke the polynomial-time algorithm [21] to compute the minimum cost circulation
of (V0, Ẽ, ℓ̃, ũ,−w̃) where −w̃ is the coefficient function of the linear costs, denote the
optimal flow by f̃ ;

11: for e ∈ E0 do
12: if e = e

(w)
s,s′ ∈ E1 then f(e)←

∑
i f̃(e

(w,i)
s,s′ );

13: else f(e)← f̃(e);
14: return f ;

the directed graph (V0, E0).

Proof. We only need to prove that in the NLWC problem with regularity, each non-linear

edge in E1 with finite capacity can be substituted by a finite number of linear edges.

Consider an edge e = e
(w)
s,s′ ∈ E1, then ℓ(e) = 0. Then, for each i ∈ N s.t. 1 ≤ i ≤ u(e), we

add to Ẽ an linear edge ei(s, s′, 0, 1, w(i)−w(i−1)). Since r(i; e(w)
s,s′)− r(i−1; e

(w)
s,s′) decreases

with i, when we should put t amount of flow from s, s′ in G1, the optimal plan is to saturate

edges e(w,1)
s,s′ , e

(w,2)
s,s′ , · · · , e

(w,t)
s,s′ , with total reward r(t; e

(w)
s,s′), identical to the NLWC model.

Therefore, we realize the same edge-reward function as the NLWC model with a minimum

cost circulation model. While the Maximum Revenue Car Dispatching problem needs integer

solutions, from the total unimodularity property of the minimum cost circulation problem,

it is guaranteed that our algorithm outputs an integer basic solution. Therefore, we can

indeed solve regular Maximum Revenue Car Dispatching via the minimum cost circulation

problem. Q.E.D.

We also remark that even when in the general scenario (without the regularity condition),

a simple variation of Algorithm 1 also serves as a good approximation to the optimal solution.
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It virtually approximates the edge reward function by its concave envelope to “iron” it to a

concave function [25]. Please refer to Appendix A.2 for details.

3.4 Phase 2 of the Deterministic Setting: Fair Reward
Re-allocation to Drivers

Recall that in Phase 1 we have found the maximum revenue that can be achieved by any

dispatching plan in the deterministic setting. Along the way, we have also figured out

how many drivers are needed for a spatiotemporal arc (s, s′) ∈ Q with a rider (namely

f(e
(w)
s,s′)) and without carrying a rider (namely f(e(o)s,s′)). For convenience, we define F (s, s′) :=

f(e
(w)
s,s′)+f(e

(o)
s,s′) to be the total number of drivers we plan to dispatch along the arc (s, s′). In

this section, we develop methods to figure out the fair payment scheme y : S×S → [0,+∞)

for driving along each spatiotemporal arc to ensure that the drivers are well incentivized to

cooperate with the platform and execute the optimal-revenue dispatching plan. Formally,

we define the fairness condition as follows.

Definition 3 (Fair re-allocation). A re-allocation scheme is fair if and only if following

conditions are satisfied:

• Budget-balance. Let I be the total income collected from the riders. This should also

be the exact amount to be distributed to the drivers.2 Formally, it is required that∑
(s,s′)∈Q y(s, s

′) · F (s, s′) = I .

• Individual rationality. For each arc driven, the payment should be at least the cost; i.e.,

for each (s, s′) ∈ Q so that F (s, s′) > 0, it is required that y(s, s′) ≥ c(s, s′).

• Subgame-perfectness. This is formally defined soon in Definition 4 which, together

with the individual rationality condition, makes sure that the drivers do not have the

incentive to refuse and deviate from the dispatching plan.

• Envy-freeness. This is formally defined in Definition 5 which makes sure that the drivers

do not complain that the dispatching plan is more favorable to others than themselves.
2We omit the amount that the platform would like to keep for profit, which can be easily added to the

constraint w.l.o.g.
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Note that we need to define subgame-perfectness and envy-freeness in details. Before

doing this, we need to introduce a few new notations and definitions.

We will model the drivers’ behavior as an extensive game [26], where, at each state, each

driver has the freedom to choose any route starting from the current state. At any time step,

let Aq denote the routing plan given by the platform for the driver q, let A := {A1, A2, . . . }

denote the set of routing plans for all drivers, and let A−q := A \ {Aq}. For each driver q,

let uq(A ) denote the utility (i.e., net profit) of driver q if all drivers follow the routing plan

A . In particular, we have that uq(A ) =
∑

(s,s′)∈Aq
(y(s, s′)− c(s, s′)).

The subgame-perfectness condition requires that given reward re-allocation scheme and

the set of routing plans for all drivers by the platform, any driver q does not have the

incentive to deviate from the routing plan given to him/her. Formally, we make the following

definition.

Definition 4 (Subgame-perfectness). A reward re-allocation scheme is subgame-perfect if

at any time step, let A := {A1, A2, . . . } be the routing plans decided by the platform, and

for any driver q, and for each route A′
q sharing the same starting state as Aq, it holds that

uq(Aq, A−q) ≥ uq(A
′
q, A−q).

Note that in game theory, a subgame-perfect Nash equilibrium in a extensive game is a

strategy profile for the agents such that at any point of the game, the agents’ strategies

form a Nash equilibrium for the continuation of the game. Definition 4 requires that reward

re-allocation scheme makes sure that the routing plan given by Proposition 3.1 is a subgame-

perfect Nash equilibrium.

We would also like to make sure that each driver does not feel comparably inferior than

others at the same state. Formally, we define the envy-freeness condition as follows.

Definition 5 (Envy-freeness). A reward re-allocation scheme is envy-free if at any time

step, let A := {A1, A2, . . . } be the routing plans decided by the platform, and for any two

drivers q and q′ staying at the same state, it holds that uq(A ) = uq′(A ).

Now we have completed the formal definition of a fair re-allocation scheme. The following

lemma provides an elegant characterization of all fair re-allocation schemes and enables us
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to find such schemes only among the potential-based re-allocation algorithms. The proof of

Lemma 3.1 can be found in Appendix A.1.2.

Lemma 3.1. Given a routing plan A , a reward re-allocation is fair if and only if there

exists a corresponding potential function P : S → R≥0 such that

1. For any s ∈ S where A directs at least one driver to leave at state s (we call such

states the terminal states), it holds that P (s) = 0.

2. ∀(s, s′) ∈ Q, y(s, s′)− c(s, s′) ≤ P (s)− P (s′).

3. ∀(s, s′) ∈ Q : F (s, s′) > 0, y(s, s′)− c(s, s′) = P (s)− P (s′) ≥ 0.

4.
∑

s∈S P (s)(degi(s)− dego(s)) =
∑

(s,s′)∈Q F (s, s
′)(p(s, s′)− c(s, s′)), where degi(s) and

dego(s) are the number of drivers to enter and leave the platform at the state s

respectively.

Leveraging the power of Lemma 3.1, we are able to prove the following theorem stating

that a fair reward re-allocation scheme always exists in all non-degenerating scenarios (i.e.,

the total revenue is non-negative and at least one driver starts from a non-terminal state).

Theorem 3.4. Let S# ⊆ S denote the set of terminal states. If there exist s1 ∈ S \ S#

and s2 ∈ S such that F (s1, s2) > 0 and I ≥
∑

(s,s′)∈Q F (s, s
′) · c(s, s′) (recall I is the total

income collected from the riders), then there exists a fair reward allocation plan.

Proof. We define a directed graph G′ on vertex set V (G′) = (S − S#) ∪ {t}, in which all

states in S# are contracted in a single vertex t. For each order from s /∈ S# to s′ we add a

directed edge (s, s′) with length 1 if s′ /∈ S#, or (s, t) with length 1 if s′ ∈ S#, and for each

possible cruise arc from s to s′ we add an edge with length 0.

As all arcs advance in time, the graph is a directed acyclic graph (DAG). Therefore, we

can define P̃ (s) as the maximum distance of all paths from s to t, or 0 if s ∈ S#. Then we

let R∗ = {(s, s′) ∈ Q : f(s, s′) > 0}, define µ(s, s′) = P̃ (s)− P̃ (s′), and then we allocate the

revenue proportional to µ, i.e. let

P (s) = P̃ (s) ·
I −

∑
(s,s′)∈Q F (s, s

′)c(s, s′)∑
(s,s′)∈Q F (s, s

′)µ(s, s′)
. (3.1)
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Because of the assumption that I ≥
∑

(s,s′)∈Q F (s, s
′)c(s, s′), we are ensured that r(s, s′)−

c(s, s′) is proportional to µ(s, s′) with a non-negative ratio. We can see all constraints are

satisfied. Q.E.D.

When the fair re-allocation scheme is not unique, we solve the quadratic program in

Figure 3.1 to find the scheme to minimize the total squared distortion between the price

paid by the rider and the reward allocated to the driver among all trips. In this way, we

try the best to let the reward re-allocation reasonably reflects the real income generated by

driving through each arc. It is straightforward to see that the constraints (3.3,3.4,3.5,3.6,3.7)

in the quadratic program implement the conditions stated in Lemma 3.1.

Minimize
∑

F (s,s′)>0

F (s, s′)(p(s, s′)− y(s, s′))2

Subject to P (s) ≥ 0, ∀s ∈ S (3.2)
y(s, s′) = P (s)− P (s′) + c(s, s′), ∀F (s, s′) > 0 (3.3)
y(s, s′) ≤ P (s)− P (s′) + c(s, s′), ∀(s, s′) ∈ Q (3.4)
P (s) = 0, ∀s ∈ S# (3.5)
y(s, s′) ≥ c(s, s′), ∀F (s, s′) > 0 (3.6)∑
s∈S

P (s)(degi(s)− dego(s))

=
∑

(s,s′)∈Q

F (s, s′)(p(s, s′)− c(s, s′)) (3.7)

Figure 3.1: Quad. Prog. with decision variables {P (s)}s∈S

3.5 The Stochastic-Demand Setting

In the previous sections, we studied the optimal car dispatching and reward allocation task

assuming the access to the full list R of latent orders, which is not realistic in practice. In this

section, we assume that R is drawn from an unknown distribution {D(s, s′)} and address

the problem with techniques combining both learning and optimization. To achieve this
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goal, we study the optimal car dispatching and reward allocation task with the distribution

{D(s, s′)} known. We will refer to this task as the stochastic-demand setting.

Our algorithm for the stochastic-demand setting is a natural extension of that for the

deterministic setting presented in the previous sections. Below we describe the adaptation

we make for each phase in the deterministic setting. We will also introduce a special

parametric demand distribution (Gaussian-Poisson distribution) for the learning algorithm

in Appendix A.4.1.

3.5.1 Phase 1: Revenue Optimization

For each arc (s, s′), we denote xs,s′ as the random variable for the number of latent orders,

{vt}t∈[xs,s′ ]
as the random variables for the valuations, and denote D(s, s′) as the distribution

of (xs,s′ , {vt}t∈[xs,s′ ]
), with the assumption that each vt are i.i.d. variables.

For each arc (s, s′), if we fix the price to be p and plan to dispatch n drivers to the arc, the

number of the fulfilled latent orders will be the smaller value of n and the number of orders

of valuations at least p. Therefore, given D(s, s′), we may compute the following quantities:

• The probability mass function P(i; s, s′, p) : N→ R for the number of qualified orders

(orders with valuation at least p): P(i; s, s′, p) =
∑∞

j=0 b(i, j;Pr[vt ≥ p])Pr[xs,s′ = j],

where b(k, n;P ) =
(
n
k

)
P k(1− P )n−k computes the binomial distribution.

• Let ũ(n; s, s′, p) be the number of the fulfilled latent orders; its expectation:

E [ũ(n; s, s′, p)] =
∑∞

i=0 P(i; s, s′, p)min{i, n}.

• The expected revenue on (s, s′) at price p and n drivers: R(n, p; s, s′) = p ·

E [ũ(n; s, s′, p)]− c(s, s′) · n.

The following definition states the optimization problem we have to solve in order to

maximize the revenue in car dispatching in the stochastic-demand setting.

Definition 6. Given D(s, s′) for all arcs (s, s′), the Stochastic Maximum Revenue Car

Dispatching problem is to find the optimal solution to the NLWC problem on the directed graph

(V0, E0), where (V0, E0) is constructed in a similar way as described above Proposition 3.1,
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and the only difference is that for the edges corresponding to driving with a rider, we set the

corresponding reward function r(n; e
(w)
s,s′) = maxp∈R≥0{R(n, p; s, s′)}.

In Definition 6, r(n, e(w)
s,s′) is re-defined so as to equal the maximum possible (over all

candidate prices) expected revenue generated by dispatching n drivers to the arc (s, s′).

Therefore, the optimal solution to the stochastic maximum revenue car dispatching problem

is the maximum possible expected revenue achieved by any dispatching plan.

Note that in Definition 6, the only quantity that specifically depends on the form of the

demand distribution is the non-linear reward function on the edges e(w)
s,s′ .

3.5.2 Phase 2: Fair Re-allocation

After solving the NLWC problem on (V0, E0), we obtain the number of drivers to dispatch

and the price for each arc (s, s′). With this information, we may invoke the quadratic

program in Figure 3.1 to find out the potential-based reward re-allocation scheme for the

drivers. We are able to show the following the fairness guarantees in the stochastic-demand

setting, while the detailed proof is omitted since it is almost the same as the proof in Phase

2 of the deterministic setting.

Theorem 3.5. In the stochastic-demand setting, the potential-based reward re-allocation

scheme obtained by the QP in Figure 3.1 satisfies the fairness conditions in Definition 3,

except for that the budget-balance condition is changed to the following expectation version.

• Expected-budget-balance. The expected income collected from the riders should equal

to the amount to be distributed to the drivers.3 Formally, it is required that∑
(s,s′)∈Q y(s, s

′) · F (s, s′) = E [I ], where I is the collected income.

3.5.3 Online Learning

We use a Thompson sampling-based algorithm to learn the demand distributions from riders’

responses to given prices. The details are deferred to Appendix A.5.
3Similarly, here we also omit the amount that the platform would like to keep for profit.

26



3.6 Experimental Evaluation

Due to space constraints, we defer many of the experiments to Appendix A.7. For example,

we empirically verify the regularity of Gaussian-Poisson distributions in Appendix A.7.1,

and evaluate the online learning algorithm in Appendix A.7.2; we also show an illustrative

example of our fair re-allocation algorithm on the real-world dataset in Appendix A.7.4.

Experiments are run on an Intel i7-8750H, 24GB RAM computer with MATLAB 2021b.

3.6.1 Model Setting

We now evaluate our algorithm by simulated experiments on the DiDi Chuxing public dataset

[27] collected from the real-world ridesharing in Chengdu, China. For one day, we extract all

orders and driver initial positions and discretize the locations into 10×10 = 100 squares with

dimension 2km× 2km, and divide the time interval between 8am and 1pm in a day into 20

slots, each of which spans 15 minutes. Therefore, there are 2000 spatio-temporal states in a

day, and we use the reward column in the dataset as the rider’s valuation for the trip. Finally,

we assume the latent orders follow the Gaussian-Poisson distribution (Appendix A.4.1), and

collect the data for 30 days and fit the numbers and valuations of orders in any arc into the

Gaussian-Poisson distribution, as the true model parameters.

Robustness. To evaluate the generalization ability of our algorithm, we modify the

following two key parameters in experiments: the number of drivers and the standard

deviations of the riders’ valuations. Here we report the experimental results showing that

our algorithms still perform well under these different experimental environments.

In Table 3.1, we modify the number of drivers. In the 50% drivers setting we remove each

driver with 50% independent probability and in the 200% drivers setting we duplicate every

driver. In Table 3.2, we modify the standard deviations of the riders’ valuations by 0.5 and

1.5 times respectively.
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3.6.2 Revenue Evaluation

Given the true model parameters, we invoke the algorithms described in Section 3.5 to

find out the offline (model parameters known) optimal revenue of the Stochastic Maximum

Revenue Car Dispatching problem. We refer to this value as the two-phase value (2P). For

comparison, we introduce the baseline distance-based fix-price algorithm (FP) where the price

for each arc is proportional to the distance of the trip with a globally fixed (but tuned) ratio,

and the dispatching is done via the same network-flow-based planning algorithm.

3.6.3 Fairness Evaluation

To evaluate the fairness, we define the A(s) as the average net income of all drivers initially

at state s. For a driver q ∈ Q, we denote sq as the initial state of q and uq as the total

net income of q. Then, we define the absolute unfairness Ξ =
√∑

q∈Q(uq−A(sq))2

|Q| and relative

unfairness ξ = Ξ/
∑

q∈Q uq

|Q| , which can be interpreted as the absolute and relative fluctuation of

drivers’ net incomes from given initial states. We have proven that our two-phased algorithm

guarantees zero unfairness, and evaluate the unfairness of baseline pricing algorithms. To

show the contribution of re-allocation, we refer to the result of only Phase 1 as P1.

3.6.4 Results

We report the revenue (Rev) and relative unfairness (Unf) of different settings in following

tables.
Table 3.1: Rev(×104)/Unf with different numbers of drivers .

#drivers 6655 13411 26822
Rev Unf Rev Unf Rev Unf

2P 6.82 0.000 9.32 0.000 11.17 0.000
P1 6.82 0.114 9.32 0.172 11.17 0.243
FP 5.54 0.108 7.56 0.168 9.02 0.244

We see that our algorithm achieves higher revenue than the fixed-price algorithm, and our

re-allocation phase eliminates the unfairness that would typically range from 10% to 25% of

drivers’ incomes, which increases with numbers of drivers.
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Table 3.2: Rev(×104)/Unf with modified standard deviations .

stddev 0.5σ 1.0σ 1.5σ
Rev Unf Rev Unf Rev Unf

2P 10.36 0.000 9.32 0.000 8.61 0.000
P1 10.36 0.167 9.32 0.172 8.61 0.178
FP 7.90 0.162 7.56 0.168 7.25 0.172

Intuitively, a large number of drivers would tend to result in increased unfairness as

they fulfill a large portion of latent orders with a wider spread of profits (analysis in

Appendix A.7.5). Therefore, the re-allocation phase becomes essential for satisfaction of

drivers especially in this scenario.

3.7 Computational Complexity Analysis

Let n,m, a be the number of states, latent orders and admissible arcs, respectively. Our

Phase 1 essentially solves a linear program of size O(m + a), which runs in Õ((m + a)2.373)

time [28]. Our Phase 2 solves a quadratic problem of O(n) variables and O(a) input size,

which can be transformed into a semidefinite program that runs in Õ(
√
n(an2+a2.373+n2.373))

time [29].

3.8 Conclusion

In this chapter, we present an algorithmic framework for car dispatching and pricing with

both revenue and fairness guarantees. Empirical evaluation shows that our method performs

better than the baseline alternatives in the real-world dataset. For future directions, it is

interesting to prove the regularity of edge demand functions in Gaussian-Poisson distribution

and explore the regularity property of other distributions, and mathematically prove the

guarantees of our Thompson Sampling algorithm (e.g., its convergence property and finite-

sample regret bound).
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CHAPTER 4

COLLUSION-PROOF BLOCKCHAIN
TRANSACTION FEE MECHANISM DESIGN

4.1 Introduction

The blockchain, as a new decentralized technology, is becoming an interesting research object

for the Operations community (see, e.g., Davydiuk et al. [30], Iyengar et al. [31], Manzoor

et al. [32], Whitaker and Kräussl [33] and references therein). Just like the emergence

of the ridesharing topic ten years ago, the special structure in blockchain poses many

unique challenges in auction theory, game theory, scheduling, and optimization; in turn,

the blockchain technology also has applications that foster traditional aspects of operation

research, e.g., newsvendors and supply chains [34]. Particularly, in the scope of game theory,

Liu et al. [35] surveys a variety of its applications in blockchain systems.

Let us zoom in and briefly discuss the structure of a standard blockchain. A blockchain

is essentially a linked list (or a chain) of blocks, where each block stores a number of

transactions. There are two types of agents participating in a blockchain: users and miners.

Users propose to put transactions on the chain, and miners pack transactions into a block

and then send blocks to the chain. Once the block has been finalized on the chain, the

miner will receive tokens (e.g., Bitcoin) as a reward. Generally, each block may contain

multiple transactions, but only one miner claims ownership of the block and obtains the

corresponding reward. An illustration of the generation process of each block is shown in

Figure 4.1.

The blockchain stores the blocks sequentially in the time order. After a miner creates a

new block, the block is appended to the chain via a reference to the latest existing block.

For the efficiency of the block space, each block only contains a pre-specified limited number

of transactions. In order to retrieve the status (e.g., balances of each user), we have to track
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Figure 4.1: The role of different parties in generating one block in a blockchain.

Figure 4.2: Illustration of the blockchain structure. Above the dashed lines are the blocks
and their contents (transactions and rewards). The blocks are arranged from left to right
in the time order, and each block is linked to the previous one on its left. Below the dashed
lines are the states of the system – the amount of money owned by each party at the time.

from the beginning of the chain and go through all previous transactions to determine the

current status at any block. We show the structure of the blockchain in Figure 4.2.

As each block only contains a limited number of transactions, the major bottleneck of

limited-space design in the blockchain systems draws wide research interest in the field of

mechanism design (e.g., Wang et al. [36]). With this bottleneck, users need to compete to

win a transaction space in the block. Such competition can naturally be implemented via

an auction. However, as we will explain later, the auction design in a blockchain exhibits

unique challenges on how to charge the users properly and how to reward the miner. This

problem is usually referred to as “transaction fee mechanism (TFM) design”, which has been

modeled by a seminal paper of Roughgarden [37]. In more detail, to incentivize the miners

to mine the block, the blockchain systems adopt economic mechanisms to pay miners via
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cryptocurrency. Such payments usually consist of a mining reward, and an additional reward

extracted from transaction fees paid by users named as the miner revenue. As users benefit

from transactions being confirmed on the blockchain and miners need the incentivization, it is

reasonable to charge transaction fees from users for confirmed transactions. As described by

Roughgarden [37], the on-chain space is a scarce resource, so to facilitate the social efficiency

of the system, we want to confirm transactions of high values. Therefore, many blockchains

adopt bidding-confirmation transaction fee mechanisms (TFM) such as auctions.

However, due to the online and anonymous properties of blockchains, the design of

mechanisms for blockchain systems faces a major concern of credibility [38]. Compared

to traditional auctions, the miner has a wider strategy space (than a traditional auctioneer)

to conduct dishonest activities, including injecting fake transactions, concealing users’ bids,

and colluding with users. Therefore, it is important to address these unique challenges raised

in the blockchain setting and develop a desirable TFM that discourages all possible dishonest

activities to make sure the whole on-chain economic system can operate correctly.

In a blockchain system, there are mainly three types of dishonest behaviors: Untruthful

Bids (UB), Fake Transactions (FT), and Transaction Deletion (TD). The agents who might

conduct these dishonest behaviors include individual user (U), individual miner (M), miner

colluding with c users (MUc), and collusion among c users (Uc) with c ≥ 2. We provide a

table to summarize all types of deviations at the end of Section 4.1.2.

In our research, we prevent these types of dishonest behavior in a mixed way consisting

of cryptographic and economic techniques. In the cryptographic part, we introduce a

commitment scheme from [39] and adapt it into our proposed mechanism (as shown in

Appendix B.1) that both essentially runs a sealed-bid auction that ensures fairness among

users’ information sets and restricts the miner’s strategic space, also resolving the MEV

(miner-extractable-value or maximal-extractable-value) issue, in which miners may gain

additional revenue via strategically injecting, excluding or re-ordering the transactions [40],

via pinning down the transaction orders before they are revealed. As shown in Appendix B.1,

some types of dishonest behavior (particularly deviations by an individual miner) can be

effectively prevented via cryptographic protocols. Furthermore, the anonymity property of

the blockchain system also brings intrinsic difficulty to collusions among users. Therefore,
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in the economic part, we mainly focus on the prevention of individual user’s deviation
and miner-user collusion.

4.1.1 Research Question: How to Design Truthful and Collusion-Proof
TFMs

To understand our results, we provide the necessary background on the truthfulness of users

and miners. In the standard auction theory, a strong version of the truthfulness of users

can be specified as the User-Dominant-Strategy-Incentive-Compatibility (U-DSIC), which

means that any individual user will not benefit from deviation from truthful bidding even

if she knows all bids of other users (as in Definition 9). In many practical scenarios, it

would be difficult to satisfy such a strong notion of truthfulness. Instead, a weaker version

of the truthfulness of users is studied in this paper, i.e., the User-Bayesian-Nash-Incentive-

Compatibility (U-BNIC) (also known as Bayesian-Incentive-Compatibility (BIC) in some

literature). In particular, U-BNIC means that when each user only knows the distribution

of others’ valuations, the game achieves a Bayesian Nash equilibrium when all users truthfully

bid their valuations (see Definition 10). The truthfulness of the miner can be specified as

the Miner-Incentive-Compatibility (MIC), which means that the miner will not benefit from

untruthful behavior, e.g., injecting fake transactions or ignoring existing transactions. For

the issue of collusion, the paper by Chung and Shi [41] formulates collusion-proofness as

c-Side-Contract-Proof (c-SCP): when the miner colludes with at most c users by asking

them to change their bids, the coalition cannot increase the total utility by deviations from

truthfully bidding their valuations (as in Definition 12).

The key question is how to design TFMs to guarantee incentive compatibility and

collusion-proof requirements, and the existing works on TFM design can be roughly classified

into two families: auction-like mechanisms in which confirmed users’ payments are dependent

on the bids of the current block, and posted-price mechanisms in which their payments are

completely based on statistics of previous blocks. The most intuitive form of the single-round

auction mechanism is the first-price auction [6], in which the auctioneer collects all users’

bids, and sells the item to the user who bids the highest at the price she bids. When we
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generalize the first-price auction to the setting of multiple identical items, the auctioneer

sells the items to users with the k-highest bids, charging the users what they bid. The

Bitcoin blockchain essentially uses the multi-item first-price auction, but it is not truthful:

users tend to bid lower than their valuations. A famous DSIC auction mechanism is the

(multi-item) second-price auction [6], where the winners are also the k-highest bidders but

their payment is the (k+1)-th highest bid. However, the second-price auction is susceptible

to miner-user collusion as the miner may collude with the (k+1)-th highest bidder by asking

her to raise her bid as long as it is still lower than the k-th highest bid. In such a way, the

(k + 1)-th highest bidder still gets the same utility 0 while the miner gets a higher revenue,

increasing the total utility of the colluding party.

To solve the issue of collusion, the EIP-1559 mechanism [42] in Ethereum seeks to avoid

collusion by adopting a dynamic posted-price mechanism, as long as the posted price is “well

chosen” from historical demands, in expectation that there is no congestion on the block size

— if there is nothing to bid, there is significantly less space for strategic bidding (i.e., UB).

However, in the TFM of EIP-1559, the miner typically gets no revenue from the transaction

fees as the fees have to be “burnt” and removed from the blockchain to maintain collusion-

proof properties (details discussed in Section 4.2.2). While EIP-1559 prevents collusion

between users and miners, it is economically inefficient for miners as miners get no rewards

from the transaction fees. Therefore, a natural question would be the following:

Can we design a TFM that satisfies both truthfulness

and collusion-proof conditions, and has a desirable miner revenue?

To answer this question, the paper by Chung and Shi [41] proves a negative result

(Theorem 4.1) under the User-Dominant-Strategy-Incentive-Compatibility (U-DSIC). In

particular, even if we only consider the deviation set that contains individual-user untruthful

bids and the miner collusion with one user, it is impossible to make positive revenue in

the complete-information setting. To address this issue, the paper by Chung and Shi

[41] introduces a so-called γ-strict utility, in which the parameter γ roughly depicts the

probability that a currently unconfirmed transaction would be confirmed in future blocks
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(see details in Section 4.2.1). However, such relaxation involving confirming a transaction

in future blocks, brings an additional layer of difficulty. Indeed, the probability that a

currently unconfirmed transaction gets confirmed in future blocks is not a universal constant,

as unconfirmed transactions with higher bids are more likely to be confirmed in the future

than those with lower bids. Thus, finding an accurate γ can be difficult, if not impossible.

Therefore, we would like to ask the following question in this paper.

Are there other reasonable relaxations of the model and incentive compatibility

specifications to circumvent the impossibility result?

For this question, a series of related works (e.g., Gafni and Yaish [43], Shi et al. [44], Wu

et al. [45]) have studied the problem of revenue optimization for blockchain transaction fee

mechanisms with different models. Although it might be argued that the absence of miner

revenue, or burning of money, may not directly undermine global social welfare [46], a non-

zero additional reward for transaction confirmation besides the static block reward would

indeed incentivize the miner to create the blocks honestly, in order to earn more money

in addition to the basic block reward, especially for blockchains like Bitcoin in which the

block rewards gradually go to zero. Besides, while the burning of tokens is not necessarily

value-destroying, excessive burning may lead to a problem of deflation. While an important

motivation of Bitcoin is to prevent inflation, from an economic perspective, deflation could

be even worse than inflation in the long term because it may discourage spending and

investment [47, 48], as people would prefer holding onto their tokens rather than using them

in transactions. To maintain a thriving ecosystem in the blockchain community, we are

indeed motivated to increase miner revenue via a decreased level of burning.

In our study, we address the above open question by relaxing the U-DSIC requirement

to U-BNIC, which assumes the users only have information of distributions of other users’

valuations instead of all their bids. This relaxation is reasonable because, in the distributed

network of blockchain, it is impossible for a user to actually know all other users’ bids,

especially those who propose transactions after them but compete for the same block.

Besides, a blockchain system, when combined with a commitment scheme (as discussed
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in Appendix B.1), can essentially work as a sealed-bid auction1 in which users’ bids are not

revealed until the bidding process finishes. Hence, users only have distributional knowledge

about others, making the U-BNIC a natural requirement to prevent users’ deviation. With

the awareness that the MIC property is not the most necessary requirement (Remark 2 in

Appendix A), the main goal of the paper is to design a TFM that satisfies U-BNIC and

1-SCP for bounded i.i.d. valuation distributions with a constant-factor approximation of the

optimal revenue.

Interestingly, besides bypassing the negative result in blockchain TFMs via Bayesian

mechanism design, on the other hand, our paper also bypasses a major negative result in the

scope of Bayesian mechanism design via burning, a feature in blockchain systems. The papers

by Gershkov et al. [7], Manelli and Vincent [49] show that in conventional auction settings in

which all bidders’ payments are rewarded to the auctioneer, the BNIC and DSIC conditions

are equivalent. However, our research shows that with the incorporation of burning, the

additional freedom to allow partial payment to be rewarded to the miner actually makes

it possible to design essentially different mechanisms and gain increased revenue via the

relaxation from DSIC to BNIC. (see discussion in Section 4.2.4)

In the rest of this paper, we assume the valuation distributions of users are i.i.d. and

bounded. Without loss of generality, we assume the valuations are in the range of [0, 1].

4.1.2 Summary of Contributions

Following the previous discussion, we summarize the main contribution of the paper below.

1. We propose an auxiliary mechanism method as our main tool to study U-BNIC TFMs

by establishing connections between BNIC and DSIC auction mechanisms. In general,

the method enables us to decompose any TFM into an auxiliary U-DSIC mechanism

and a variation term and design them separately. This method can be a versatile tool

in the design of BNIC mechanisms in the paradigm of relaxing the DSIC condition to
1In naïve implementations users may be able to see bids proposed before them but not after, leading to

certain unfairness and MEV issues. With a commitment scheme (see Appendix B.1), we make it fair as all
bids are sealed until the bidding process completes.
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BNIC and utilizing the information asymmetry for higher revenue (or other desired

properties, e.g. welfare). The auxiliary mechanism method will be described in Section

4.4.

2. For ease of illustrating our main idea, we first study the case where each block only

contains one transaction (i.e., the block size is one). To design the TFM, we first

construct a so-called soft second-price mechanism as our auxiliary mechanism, also

referred to as exponential mechanism, based on the logit choice model. Via the auxiliary

mechanism method, we design our mechanism that exploits the maximum extent of

the information asymmetry between the miner and users to extract maximum revenue

for the miner (Section 4.5.2).

3. We further extend our mechanism to general block size k, and prove that the constant-

fraction approximation of optimal revenue still holds in this general case as long as the

number of users n is larger than λ0k for any fixed λ0 >
e

e−1
(see Section 4.6).

4. We further explore new properties of miner incentives in our TFM, for both size 1

and general block size k. Our results show that a reasonable level of miner deviations

would not substantially benefit the miner, even if the miner knows all the bids. We also

show a negative result that any TFM that is U-BNIC, 1-SCP and (strict) MIC cannot

have a positive expected miner revenue (see Section 4.7.1). Furthermore, we establish

a key stability result on the miner’s revenue from our TFM over the distribution of

users’ bids. This result is important in practice, as the stability of revenue is critically

important for miners (see Section 4.7.2).

As we described in the paragraph Section 4.1.1, we provide a classification of the dishonest

behaviors among different possible agents (or groups of agents). Here, we summarize this

classification in Table 4.1. Based on this classification, for different classes of deviations, we

compare the strategy-proof properties and miner revenue of our proposed mechanism with

different designs in the existing literature. The detailed comparison is provided in Table 4.2.

In this paper (as well as [41]) we are particularly interested in preventing dishonest behaviors

U-UB, U-FT, MUc-UB, M-FT, and M-TD. These dishonest behaviors are respectively prevented
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Table 4.1: Classification of Dishonest Behaviors.

Untruthful Bids Fake Transactions Transaction Deletion
Individual User (U) U-UB U-FT —

Individual Miner (M) — M-FT M-TD
Miner-c-User Collusion (MUc, c ≥ 1) MUc-UB MUc-FT MUc-TD

c-User Collusion (Uc, c ≥ 2) Uc-UB Uc-FT —

by the above-mentioned strategy-proof properties U-BNIC, U-SP, c-SCP, and MIC (where

U-BNIC, U-SP and c-SCP will be formally defined in Section 4.3.3 and MIC will be formally

defined in Section 4.7.1). In contrast, the U-UB dishonest behavior is dealt with U-DSIC

in [41] under the complete-information setting; besides, a recent work by [45] considers a

different multi-party-computation (MPC) model and develops another variant of posted-

price mechanisms with comparable incentive and revenue guarantees as our work, but via

different methodologies. We would discuss on the comparison in Section 4.2.2.

We finally note that this paper only considers the case that the miner colludes with one

user (i.e., the case c = 1 in MUc-UB) and it would be interesting to study for general c. We

would like to leave it as a future work.

Table 4.2: Comparison of different TFMs. ∗ See detailed definition in Section 4.7.1. ∗∗

Their 1-SCP notion is substantially weaker as they only allow the miner to collude with a
fixed user. ∗∗∗ This property is guaranteed only when the “posted price” is well set to
prevent congestion (see the paper of Roughgarden [42].)

Setting U-UB, U-FT MUc-UB M-FT, M-TD Revenue/OPT
Our Mechanism Bayesian ✓ c = 1 Approx.∗ Θ(1)

Chung and Shi [41] γ-strict ✓ ✓ ✓ ≈ O(γ2/c)
Wu et al. [45] MPC ✓ c = 1, Fixed∗∗, Approx. Approx. Θ(1)

Bitcoin N/A × × ✓ No analysis
EIP-1559 Deterministic Approx.∗∗∗ ✓ ✓ ≈ 0

In summary, the multi-item first-price auction mechanism adopted by Bitcoin has bad

strategy-proof properties, although it expects to have good miner revenue because it charges

and awards transaction fees in a “greedy” way. The EIP-1559 mechanism [42] has almost

the best strategy-proof properties but has zero miner revenue. The mechanism proposed

by Chung and Shi [41] can prevent general MUc-UB, but it only has good miner revenue for

small c and large γ (meaning that every transaction has a high probability to be eventually

confirmed in the future even if the bid is low, which is different from the common practice
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in the blockchain). Our mechanism uses the Bayesian setting and has decent strategy-proof

properties while achieving a constant-fraction approximation of the optimal miner revenue.

We list the meaning of abbreviations appearing in our paper in Table 4.3.

Table 4.3: List of abbreviations.

Abbreviation Meaning
TFM Transaction Fee Mechanism

(U-)DSIC (User) Dominant Strategy Incentive Compatibility
(U-)BNIC (User) Bayesian Nash Incentive Compatibility

U-SP User Sybil Proofness
c-SCP c-Side Contract Proofness
MIC Miner Incentive Compatibility
OCA Off-Chain Agreement
BF Budget Feasibility

NFL No Free Lunch
UIR User Individual Rationality
MIR Miner Individual Rationality
LP Linear Programming

MPC Multi-Party Computation
MEV Miner/Maximal Extractable Value

4.2 Related Work

4.2.1 Auction-Like TFM Design in Literature

Since the main motivation of TFM design is to allocate the scarce block space to users,

an intuitive idea is to design auction-like TFMs. While it is common to assume that

the auctioneer in a traditional auction is trusted, it is not true in blockchain systems. To

address this new challenge, the papers of Roughgarden [37] and Chung and Shi [41] split

the incentive compatibility into two parts: User Incentive Compatibility (UIC) and Miner

Incentive Compatibility (MIC), and consider the complete-information setting in which

users have complete information of others’ bids. Essentially, their papers define the term

UIC equivalent to {U-UB, U-FT}-proofness, MIC equivalent to {M-FT, M-TD}-proofness (see

Table 4.1). Furthermore, the paper by Chung and Shi [41] specifies the notion of c-SCP,
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which is equivalent to {MUc-UB}-proofness. Essentially, Chung and Shi [41] show a seminal

impossibility result as follows:

Theorem 4.1 (Chung and Shi [41]). Any TFM which is {U-UB, MU1-UB}-proof in the

complete-information (a.k.a. deterministic) setting has zero miner revenue.

Note that the original theorem of Chung and Shi [41] states that “any TFM which satisfies

UIC ({U-UB, U-FT}-proof) and 1-SCP ({MU1-UB}-proof) has zero miner revenue.” However

in their proof, they only consider the deviations of U-UB and MU1-UB but not U-FT. So as

we consider the deviations in a more refined way, they actually prove this slightly stronger

impossibility result.
To overcome the issue of zero miner revenue, Chung and Shi [41] introduce the “γ-strict

utility” to make unconfirmed over-bidder still pay a γ fraction of the worst-case cost. In
particular, if a bidder i has valuation vi and her bid bi > vi, even if the transaction is not
confirmed, she gets a utility of −γ(bi−vi). Thus, if the confirmation probability is ai(bi, b−i)

(b−i denotes bids of all other users than i) and the bidder pays pi(bi, b−i) if the transaction
gets confirmed, the utility of the bidder takes the following form:

u
(γ)
i (bi, b−i; vi) = ai(bi, b−i)(vi − pi(bi, b−i))− γ(1− ai(bi, b−i))max{bi − vi, 0}.

This relaxed utility function is justified by Chung and Shi [41] by considering the bidding

process of more than one block in a blockchain: even if an overbidding transaction is not

confirmed in the current block, the authors assume that the bid could still be collected and

confirmed into future blocks, and in the worst case, the over-bidder would have to pay their

full bid and get a utility of −(bi − vi). In this setting, the authors have further developed a

burning second price TFM that satisfies U-DSIC, MIC and c-SCP in the notion of γ-strict

utility.

The γ-strict utility that considers the multi-block setting is critically sensitive to the

parameter γ, but in practice, it is difficult to determine the value of γ due to the unpredictable

nature of future blocks. On the other hand, as users cannot see others’ bids in a blockchain

system, the requirement of a complete-information setting is too strong in practice as

compared to the Bayesian setting. In this perspective, our research focuses on the single-
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block setting in which a proposed transaction is only valid for the current block, but we

assume that each user only knows the distributions of other users’ valuations. Based on the

distributional information, we consider a different relaxation and develop our mechanism in

the Bayesian game setting.

Besides strict notions of incentive compatibility, previous research on transaction fee

design also considers nearly-incentive-compatibility properties. Yao [50] shows that the

monopolistic price mechanism proposed by Lavi et al. [51] is nearly incentive compatible,

i.e., strategic behavior can only gain a small advantage in utility. On the other hand, there

is another parallel paradigm of collusion-proofness named as OCA-proofness, as proposed

by Roughgarden [37], which only considers collusion of confirmed users instead of all users

and has different properties. The detailed difference has been discussed by Gafni and Yaish

[43] and Chung et al. [52].

Collusion-proofness notions: OCA-proofness and SCP. In a recent work [52], the

authors study the relations between the two notions. As argued by Chung et al. [52], the

OCA-proofness notion conceptually depicts the property that the colluding parties cannot

“steal” from the protocol to gain more utility, and SCP means they can neither “steal” from

the protocol nor from other users. It has also been shown in [52] that OCA-proofness

is implied by c-SCP for any c, i.e., ∞-SCP is a stronger notion than OCA-proofness.

Nevertheless, Chung et al. [52] also show that 1-SCP and OCA-proofness are incomparable

notions.

From an economic perspective, it is not necessarily detrimental if colluding parties “steal”

from the protocol to gain more utility. If offchain payments ensure that every agent

experiences a weak increase in utility while maintaining protocol functionality, this collusion

can actually represent a Pareto improvement [53]. While a Pareto improvement appears to

be a desirable improvement of the ecosystem that does not need to be prevented, in a non-

OCA-proof mechanism, the existence of Pareto improvements indicates that the mechanism

is not economically efficient. Therefore, while the concept of SCP aligns with the principle

of strategy-proofness, OCA-proofness is more relevant to the idea of Pareto optimality.

Considering that “stealing from others” is clearly a dishonest behavior we aim to prevent,

the study of SCP remains crucial.
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4.2.2 EIP-1559 and Posted-Price TFM Design in Literature

Due to the anonymity of blockchain systems, blockchain TFMs are subject to a wider scope

of dishonest behavior than traditional auctions, e.g., collusions and fake identities. While

auction-like mechanisms can balance the supplies and demands as the prices are decided by

the users’ bids, the parties indeed have access to more strategies to manipulate the prices and

gain advantages via dishonest bidding. In response to this challenge, there are another line

of studies that replaces auctions in TFM design with a widely studied toolbox of (dynamic)

optimal pricing, in which the “posted” prices are not decided by users of the current block,

but from the statistics of previous blocks [42, 45, 54]. With the purpose of dynamically

adjusting price based on supplies and demands, auction mechanisms and dynamic posted-

price mechanisms are indeed solutions with different paradigms that both have the potential

to be utilized in TFM design, as discussed in the studies of Hammond [55], Bubeck et al.

[56], and so on.

Particularly, the EIP-1559 TFM, which is currently adopted in Ethereum, is essentially

designed to be a posted-price mechanism that effectively prevents dishonest behavior, with

a backup component of an auction-like mechanism in case the posted price is (unexpectedly)

too low to prevent congestion. The EIP-1559 TFM works as follows:

1. The blockchain system adaptively decides on a base fee for the current block.

2. Each user proposes a transaction, paying the base fee and a voluntary tip if the

transaction gets confirmed.

3. The (winning) miner confirms the transactions proposed by the users. It is expected

that the number of transactions usually does not exceed the block size.

4. The miner gets a pre-defined block reward as well as all the tips. The base fees are

burned and removed from the blockchain system.

In the ecosystem of EIP-1559, when there is no congestion, the miner does not need

to consider the block size constraint and can confirm all the proposed transactions, so

the users would pay very small tips and it is enough to incentivize the miner to confirm
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their transaction. At “exception” scenarios when there is congestion, the miner would be

incentivized to confirm transactions with the highest tips, and all the tips go to the miner.

Hence, the EIP-1559 mechanism can be modeled as follows:

• If there is no congestion, EIP-1559 is essentially a posted-price mechanism with the

posted price equal to the base fee; all payments are burnt and the miner gets no revenue

from the transaction fees.

• If there is congestion, EIP-1559 shifts to a multi-item first-price (aka. pay-as-bid)

auction. A fix amount of tokens (base fee · block size) are burnt and the remaining

tokens go to the miner.

Due to the zero-revenue disadvantage of EIP-1559 and the existing impossibility results,

researchers also attempt to avoid this negative aspect with alternative modeling and

reasonable relaxations that apply to the blockchain environment. In consideration of

the cryptographic nature of blockchain systems, Shi et al. [44] introduce a multi-party-

computation (MPC) model that achieves ϵ-approximate incentive properties with a positive

miner revenue scaling with Θ(
√
ϵ). Following the MPC model, Wu et al. [45] developed an

LP-based posted-price mechanism that achieves U-DSIC, approximate Bayesian MIC and

approximate Bayesian 1-SCP with positive miner revenue. The collusion-proof properties in

the MPC-based models differ from ours as follows: in our work, we assume the miner to have

access to all users’ valuations, and may pick any c user(s) to collude with; in the MPC-based

models described in [44, 45], the miner only has access to the valuations of c colluding users,

so their c-SCP notion is weaker than our paper. Particularly, as their study has shown the

impossibility even for c = 2, their method is only applicable for the case that the miner may

only collude with a fixed user, which is highly restrictive for real-world blockchain systems.

Comparison between our mechanism and [45]. The paper of Wu et al. [45] shows

that even in the MPC-based model 2-SCP is impossible. From the above explanation,

their approximate Bayesian 1-SCP property is weaker than our work, but their U-DSIC

property is stronger than ours. For the sybil-proofness properties, their mechanism also

upper bounds the number of fake bids to h, comparable to our approximate-SP notions.
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For the methodologies to secure incentive guarantees, similar to EIP-1559, the mechanism

in [45] uses a variant of posted-price mechanism in which confirmed users’ payments are

fixed, and the miner’s utility is calculated by a linear program and only depends on the

number of candidate users with valuations above the posted price. Their mechanism thus

prevents the UB strategy by essentially avoiding the bidding process, while our mechanism

is in an auction-like form with the auxiliary mechanism method to ensure that honest bids

achieve optimal expected utilities. In general, the paper of [45] adopts different modeling

and methodology in mechanism design, while achieving a comparable level of incentive and

revenue guarantees to our work. The diversity in models and methodologies renders the

topic of TFM design a novel and valuable area for future exploration in the OR community.

4.2.3 Choice Modeling and the Multinomial Logit (MNL) Choice Model

Choice modeling, which models how consumers would make choices among provided goods,

plays an important role in revenue management [57, 58]. Indeed, assortment optimization

under a wide range of choice models has been extensively studied in the operations literature.

The most popular choice model is the multinomial logit model (MNL) (see, e.g., van Ryzin

and Mahajan [59], Mahajan and van Ryzin [60], Liu and van Ryzin [61], Rusmevichientong

et al. [62]). Other choice models, such as nested logit models [63, 64], non-parametric choice

model [65], Markov chain choice model [66, 67], have been studied under the problem of

assortment optimization.

Instead of using the standard auction (e.g., first-price auction) to assign the winning bidder

deterministically, the MNL model provides a randomized way to select the winning bidder.

In particular, for a given set of alternatives, assuming each choice j has an expected utility

ui(j) for agent i. In other words, the agent i perceives a value ûi(j) = ui(j) + ei(j) for the

choice j, where ei(j) is a random variable of perception error with E[ei(j)] = 0. A standard

MNL model [68] assumes that all ei(j)’s are i.i.d. Gumbel distribution, and then the choice

probability takes the following form: Pr[i chooses j] = Pr[j ∈ arg maxk ûi(k)] =
em·ui(j)∑
k em·ui(k)

.

As argued by Chung and Shi [41], randomness in choosing the winning user is necessary for

a TFM to guarantee the collusion-proofness property, which we also prove in Appendix B.2
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even for the Bayesian setting. Intuitively, it is more profitable for a miner to collude with

a user who deterministically gets her transaction confirmed than a user who only has a

certain chance. While the burning second-price mechanism in Chung and Shi [41] gives

each user who bids high enough a pre-set probability to get confirmed, we consider a more

natural idea of randomization by leveraging the logit choice model into the allocation rule

(see Section 4.5.1). In this paradigm, we can prioritize high-bidding users in a more natural

and smooth way. The MNL-based allocation rule also fits well into our auxiliary mechanism

method (Section 4.4) and yields a constant-factor expected revenue compared to the optimal

revenue.

In addition, in different fields of mechanism design, the MNL choice model is also adopted

for other purposes. For example, Huang and Kannan [69] utilize a similar mechanism

to achieve differential privacy requirements, and the mechanism is also called exponential

mechanism in their work. Not surprisingly, they also replace the allocation rule of “the

highest-bidder gets the item” with a soft-max relaxation while preserving the near-optimal

property.

4.2.4 Bayesian Mechanism Design

From the famous revelation principle [70, 71], it is desirable to design incentive-compatible

mechanisms. While the strongest notion of DSIC guarantees agents to report true types even

if they have the complete information of other agents, this requirement could be a bit too

restrictive in blockchain systems as users might not have such sufficient information about

others.

In the Bayesian game setting, we assume that the distribution of agents’ types is known

by the public. At the beginning of the game, each agent’s type is assigned by nature

following the corresponding distribution. Then, each agent only knows her own type and

the distribution of others’ types conditioned on her type, and seeks to maximize her expected

utility. In this scope, a mechanism is BNIC if everyone truthfully reporting their true types

forms a Bayesian Nash equilibrium.

While the design of BNIC mechanisms is less restrictive than DSIC mechanisms, the
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revenue equivalence theorem [70] shows that the Bayesian game setting cannot gain extra

revenue in conventional auctions when users have i.i.d. valuation distributions, which is also

the basis of a series of “equivalence” results between conventional BNIC and DSIC auctions,

e.g. [72]. Furthermore, Gershkov et al. [7], Manelli and Vincent [49] show that the BNIC and

DSIC conditions are equivalent in the conventional auction setting without the involvement

of burning and collusion-proofness requirements. In the scope of blockchain transaction fee

mechanism design, however, the existence of burning allows partial “revenue” (total payment

from users) to be rewarded to the miner while still keeping ex-post budget feasibility. Hence,

while the revenue equivalence theorem [70] dictates that the Bayesian game setting cannot

increase the total user payment, our research shows that a TFM can indeed increase the

miner revenue with a decreased level of burning.

Two recent works [43, 44] on blockchain transaction fee mechanism design also consider

the Bayesian setting. In particular, Gafni and Yaish [43] argue that a simple variation of

the first-price auction can simultaneously satisfy U-BNIC and another collusion-proofness

named OCA-proofness, and Shi et al. [44] show that if we relax all the incentive conditions

(to almost U-BNIC, almost interim MIC and almost interim c-SCP), it is also possible to

achieve positive revenue. However, our result is different from [44]. We have ex-post almost

MIC and SCP guarantees, which are crucial as discussed in Remark 1 in Appendix B.1;

their work in turn considers a different MPC-assisted setting, but a weaker notion of SCP

(as discussed in Section 4.2.2). Besides, the paper by Gafni and Yaish [43] is incomparable

to ours as the OCA-proofness is fundamentally a different model from our work.

Similar to the currently used EIP-1559 TFM of Ethereum [42], and papers of Gafni and

Yaish [43] and Shi et al. [44], our work also uses a prior-dependent mechanism that requires

a parameter cρ (as defined in Section 4.5.2) that depends on the prior distribution. While

blockchain mechanisms are usually hard-coded into the system, the distributional parameter

can still be implemented to update adaptively based on historical data, similar to the base

fee in EIP-1559. As shown by Maheshwari et al. [73], adaptiveness is indeed crucial in the

development of social optimality in large-scale network mechanisms in the presence of selfish

agents.
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4.3 Preliminaries

4.3.1 Overview and Classification of Dishonest Behavior

In the blockchain system, either a user or miner may deviate from the supposed behavior

and behave dishonestly. First of all, as the blockchain system is anonymous, either type

of agent may conduct sybil attack [74] by creating multiple fake identities to influence the

performance of the system. However, in the blockchain system, the PoW or PoS mechanism

makes it costly to create a fake identity as a (winning) miner, so we mainly consider creating

fake user identities, i.e. injecting fake bids, as also mentioned by Roughgarden [37] and

Chung and Shi [41]. On the other hand, even if every agent takes their true identities, they

may do their jobs dishonestly: the users may bid differently from their true valuation, and

the miner may purposely ignore some bids. Furthermore, the miner and users may also

collude, i.e. conduct such dishonest behavior as a party in seek of increasing their total

utility.

In summary, dishonest behavior (deviations) can include untruthful bidding, fake identities

and dishonest confirmation. Therefore, the deviations can be classified into the following

three types:

• Untruthful Bids: proposing a bid different from the true valuation.

• Fake Transactions (Sybil attack): injecting fake transactions.

• Transaction Deletion: ignoring certain transactions proposed by users.

The dishonest behavior can be conducted by the miner, a user, or a colluding party of

them. A user, or a colluding party of multiple users, can make untruthful bids and inject

fake transactions, and the miner can inject fake transactions and delete existing transactions.

A colluding party that consists of the miner and users, can do all these three deviations.

Therefore, there can be 9 types of deviations in the system, as shown in Table 4.1.

We say a dishonest action is profitable when it strictly increases the total utility of all

agents participating in it. Precisely,
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• If it is an individual deviation, the agent strictly increases her utility via that deviation.

• If it is a collusion, the colluding party strictly increases its total utility via that

collusion.

In this sense, for a strategy space S , we say a TFM is S -proof if all deviations in S are

not profitable in this TFM.

Information sets of agents. Before specifying the strategy-proof conditions, we need

to discuss the information sets of agents. In traditional auctions, the notion of incentive

compatibility means that the mechanism would optimize any bidder’s utility when they bid

their true valuations. On the other hand, the subtle meaning of incentive compatibility also

depends on what the bidders know. In this scope, the strongest notion is Dominant Strategy

Incentive Compatibility (DSIC), which means that it optimizes any individual bidder’s utility

even if they know all others’ bids, i.e. they have the complete information. Nevertheless,

in sealed-bid auctions, bidders would not actually know what other bids, so the complete-

information (deterministic) setting may be too strong. Nevertheless, we may still assume

that they can perceive the distributions of others’ bids. In this so-called Bayesian-game

setting, if the mechanism can guarantee that any bidder would maximize their expected utility

via bidding their true valuation, we call the property Bayesian-Nash Incentive Compatibility

(BNIC).

In our paper, the bidding is conducted by users, so we name the DSIC and BNIC properties

for users as U-DSIC and U-BNIC, respectively. The formal definitions are in Section 4.3.3.

4.3.2 The Basic Model

There are n users numbered by 1, 2, . . . , n and each user proposes a transaction to compete

for a block. There is also a winning miner owning the block. The block has size k, the

maximum number of transactions it can confirm. For user i, w.l.o.g. we assume her valuation

vi is in [0, 1] and drawn from an i.i.d. distribution Vi = V0 with pdf ρi(·) = ρ(·). We let

V = V1 × V2 × · · · × Vn be the distribution of the valuation vector v = (v1, v2, . . . , vn).

By the revelation principle ([70, 71], see Appendix B.1), we only need to consider direct
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mechanisms in which users propose bids, the miner collects the bids and the system decides

which transactions to confirm and processes the payments. Formally, we can model any

Transaction Fee Mechanism w.r.t. its allocation, payment and miner revenue rules, as follows.

Definition 7 (Transaction Fee Mechanism). For a fixed number n of users, a Transaction

Fee Mechanism is defined by M(a, p, r), where

• the allocation rule a : [0, 1]n → [0, 1]n maps the bid vector to the allocation vector

indicating the probability each user’s transaction to be confirmed;

• the payment rule p : [0, 1]n → Rn maps the bid vector to the payment vector indicating

the payment of a user if her transaction is confirmed;2

• the miner revenue rule r : [0, 1]n → R maps the bid vector to the miner’s revenue.

In the naïve implementation of transaction collection in blockchains, users propose

transactions (including bids) publicly and sequentially in a mempool and miners pack them

into blocks, so it acts as an auction format between open bidding and sealed bidding — users

can see bids submitted before them but not after them, which may lead to several issues (see

Appendix B.1). In our mechanism, we implement sealed bids via a commitment scheme as

described in Appendix B.1 so that no bid can be viewed by the miner or other users until all

transactions that compete for the block are finalized. In the execution of the mechanism, the

system essentially elicits users for their (sealed) bids {bi}, draw the confirmed transactions

according to probabilities from {ai(bi, b−i)} (for k > 1, one follows the sampling method

discussed in Section 4.6.1 to ensure exactly k transactions are confirmed), and then charge

transaction fees from confirmed bidders according to {pi(bi, b−i)} and give the miner revenue

r(b) to the miner. Due to the size constraint, we need to guarantee
∑n

i=1 ai(bi, b−i) ≤ k.

Since the transactions are naturally anonymous and unsorted, in this paper we only consider

the mechanisms satisfying the following symmetric condition:
2This definition is different from some literature (where the “payment rule” indicates the expected

payment of a user whether she gets confirmed or not, which can be transformed to ai(·)pi(·) in our notation).
Besides, our definition naturally guarantees that unconfirmed users do not pay transaction fees.

49



Definition 8 (Symmetry). A TFM is symmetric if the allocation and payment rules do not

depend on the order of users, i.e. when we swap any pair of users, each should still have the

same allocation probability and payment as in their original positions.

In Definition 7, we assume that (in the usual case) each of the n users makes one bid,

and therefore the allocation, payment, and miner revenue rules are functions of exactly n

bids. While this definition is enough for the discussion of the main strategy-proof properties

(e.g., U-BNIC, 1-SCP) concerned in this paper, we also expect the proposed TFMs to be

strategy-proof against deviations such as the Sybil Attack and the deletion of user bids by

the miner (namely, FT and TD in Table 4.1). These deviations could change the number of

bids presented to the TFM, and we need to define the following variable-bid-size TFM to

deal with this technical issue.

Definition 7’ (Variable-bid-size TFM). A variable-bid-size TFM M (a, p, r) is

similar to the regular TFM defined in Definition 7 where the only difference is that the

allocation rule a : [0, 1]∗ → [0, 1]∗,3 the payment rule p : [0, 1]∗ → R∗ and the miner revenue

rule r : [0, 1]∗ → R may take sequences of bids of any size, while the size of the output of a

(p) should be the same as the input, where each entry in the output is the allocation (the

bid respectively) of the corresponding bid.

Throughout the paper when we refer to a TFM M , unless specially noted, we assume

that M is a regular TFM (Definition 7). We will mostly focus on the design of a TFM

for any fixed bid size. To construct a variable-bid-size TFM M , we will first choose an

Mη = (aη, pη, rη) for η bids for each η according to the regular TFM design, and then let

M = (a, p, r) = ∪η{Mη}, or more concretely, for any bidding vector b, let |b| denote the

size of b and we set

a(b) = a|b|(b), p(b) = p|b|(b), r(b) = r|b|(b). (4.1)

Given a variable-bid-size TFM M , for any fixed number of bids, namely n, there is a

natural restriction of M to a regular TFM, namely M . To derive M , we simply let its
3For any set A, we use A∗ = ∪∞ℓ=0A

×ℓ to denote the set of all finite sequences where the elements are
drawn from A.
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allocation, payment, and miner rules be the corresponding functions of M when restricted

to inputs of size n.

4.3.3 Incentive and Collusion-Proof Conditions

We now discuss the desired properties we would like the mechanism to enjoy, i.e. the

properties that agents would not gain additional utility via dishonest behavior (UB, FT, TD).

As a basis, we note that the users have quasi-linear utility: when user i has valuation vi

and the bidding vector is (bi, b−i), user i’s (expected) utility is

ui(bi, b−i; vi) = ai(bi, b−i) · (vi − pi(bi, b−i)). (4.2)

For the miner’s utility, in real-world blockchains, the miner’s reward comes from the

combination of the block reward and the miner revenue from the transaction fees, and the

miner also pays a mining cost due to the computational consumption / token staking in PoW

or PoS protocols, respectively. Since the block reward and the mining cost are fixed due to

the blockchain protocol and is not affected by the transactions, for simplicity of expression,

we just denote the miner’s utility as the miner revenue provided by the TFM, i.e.,

u(miner)(b) = r(b). (4.3)

We now formally define U-DSIC and U-BNIC as follows.

Definition 9 (User Dominant-Strategy-Incentive-Compatibility (U-DSIC)). For any user i,

assuming the miner follows the inclusion rule truthfully, a TFM is U-DSIC if and only if it is a

dominant strategy for any user to bid their valuations, i.e. ∀b−i, vi ∈ arg maxbi [ui(bi, b−i; vi)].

Definition 10 (User Bayesian-Nash-Incentive-Compatibility (U-BNIC)). Assume Ω is the

type space of nature, and there is a public mapping B : Ω → Rn
≥0 that determines the

valuation of all users. Thus, the valuation vector v ∼ V = V1 × V2 × · · · × Vn where each

Vi = V0 due to our model assumption.

For each user i, she only knows her own valuation and the distribution of other users’
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valuations conditioned on vi, denoted as V−i = V |vi. A TFM is (interim) U-BNIC if and

only if, when other users all bid their valuations, it maximizes user i’s expected utility if she

bids her valuation too, i.e. vi ∈ arg maxbi Eb−i∼V−i
[ui(bi, b−i; vi)].

We also characterize the user Sybil-proofness property, which guarantees that the user

cannot increase via injecting fake bids, her expected utility over the distribution of other

users. Formally,

Definition 11 (User Sybil-Proofness (U-SP)). Assuming each user i only knows her own

valuation and the distribution of other users’ valuations conditioned on vi, denoted as V−i, and

assuming all users bid their true valuations. Then, we call a variable-bid-size TFM (interim)

(C,N)-U-SP for a fixed (C,N) when n > N , user i cannot increase her expected utility (over

the distributions of other users’ bids) via injecting l ≤ Cn fake bids b# = {bn+1, · · · , bn+l}.

Here we still denote b = (b1, · · · , bn), and define b+ = (b1, · · · , bn+l) containing all real and

fake bids.

Notice that fake bids generally have a valuation of 0 because getting the fake transaction

confirmed does not have any value for the user. A possible exception is repeating the same

transaction when the block size k = 1, as at most one of them can be confirmed. However,

in the general case where k ≥ 2, the adverse consequence of having both transactions

confirmed (e.g., paying twice for the same transaction) far outweighs the benefit of transaction

confirmation. On the other hand, preventing this type of strategy when k = 1 is impossible for

the following reason: if all transactions have the same bid, the anonymity of the blockchain

system ensures that any mechanism can only randomly select a transaction to confirm.

Therefore, duplicating a transaction will always increase the likelihood of it being confirmed.

Since our study is mainly motivated by real-world blockchains with k ≥ 2 block sizes, we

exclude these types of strategies from consideration in our model.

The utility of user i is the total utility of i herself and all fake bids. Therefore, a variable-
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bid-size TFM is (C,N)-U-SP if and only if for any valid b+, if bi = vi, then

Eb−i∼V−i
[ui(bi, b−i; vi)]

≥Eb−i∼V−i

[
ui(bi, b+

−i; vi) +
n+l∑

j=n+1

uj(bj, b+
−j; 0)

]
.

As a shorter notion, we call a variable-bid-size TFM U-SP when there exist constants

C > 0, N > 0 such that the TFM is (C,N)-U-SP.

To describe the collusion-proofness, we use the notation of c-SCP in Chung and Shi [41],

defined as:

Definition 12 (c-Side-Contract-Proofness (c-SCP)). We call a TFM (ex-post) c-SCP when

is impossible for the miner to collude with at most c users to strictly increase their total

utility when other users bid according to the Bayesian Nash equilibrium, even if the miner

knows all users’ valuations and bids.

Note that successful collusion only needs the party to have increased total utility rather

than individual utilities, because the members can make payments among themselves to

make everyone get increased utility.

Collusion-proofness notions for non-truthful TFMs. It might be tricky to define

the collusion-proofness for a TFM that does not satisfy U-BNIC. For example, Chung and

Shi [41] claimed that the first-price auction mechanism is c-SCP in the sense that c users

and the miner could not increase their joint utility via any deviation when all other users bid

truthfully. However, in the first-price auction, the users may not report their real valuation,

leading to a different Bayesian Nash equilibrium.

In our Bayesian setting, we assume that users who do not conduct the collusion would bid

according to the Bayesian Nash equilibrium to maximize their expected utility. We show in

Appendix B.3.1 that at a Bayesian Nash equilibrium, a user and the miner could increase

their joint utility via deviation, even if burning is allowed. Therefore, we state that the

first-price auction is not even 1-SCP in our notion.

Nevertheless, for TFMs that satisfy U-BNIC, assuming non-colluding users to bid

truthfully or to bid as the Bayesian Nash equilibrium does not make a difference.
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Miner-Incentive-Compatibility. As is mentioned in the papers of Chung and Shi

[41] and Roughgarden [37], the Miner-Incentive-Compatibility (MIC) is the property that

assuming the users bid truthfully, the miner could not increase her utility via deviations

from the inclusion rule (i.e. M-FT and M-TD). It will be rigorously defined in Section 4.7.1

(Definition 15).

4.3.4 Rationality and Feasibility Requirements

Besides truthfulness and collusion-proofness, the mechanism also needs to satisfy more

general properties, e.g. the balance must be feasible, the users should not pay more than

their bid, etc. Formally, the following properties should also be satisfied.

(Ex-post) User Individually Rationality (UIR). Each user gets non-negative utility

when truthful bidding, no matter how others bid, i.e. ∀b−i, ui(vi, b−i; vi) ≥ 0. Equivalently,

ai(vi, b−i) > 0⇒ pi(vi, b−i) ≤ vi.

(Ex-post) Budget Feasibility (BF). For all bidding vector b, the miner’s revenue

r(bi, b−i) should not be greater than the total user payment:

P (b) =
n∑

i=1

ai(bi, b−i) · pi(bi, b−i). (4.4)

In other words, we should have ∀b, P (b) ≥ r(b).

Here we allow the miner revenue to be less than the total fee paid by users, in which the

difference will be burnt. The burning can decouple payments on miners’ and users’ sides,

which is an effective way to broaden the design space and allow additional strategy-proof

properties to be satisfied [2]. Actually, the burning has been used in the EIP-1559 TFM of

Ethereum.

Additionally, while we expect the transaction fee a user pays should be non-negative,

it is okay as long as the users have a non-negative expected payment to prevent users from

submitting transactions to gain money out of nothing, which is guaranteed in our mechanisms

for both k = 1 and general k (as (B.34) is satisfied). However, as UIR requires the payment

of the zero-valuation user to be no greater than zero, the payment of the zero-valuation user
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is always zero (rather than negative). Therefore, we need the following NFL condition.

No-Free-Lunch (NFL). We call a TFM (a, p̃, r̃) NFL when the payment of a zero-bidding

user is always zero no matter how other users bid, i.e.,

ai(0, b−i)p̃i(0, b−i) = 0, ∀b−i. (4.5)

4.3.5 Deterministic and Randomized Mechanisms

We assume generic positions of bids, which means that all bids are distinct. For simplicity,

we would want the mechanism to be deterministic, i.e., the same input bidding vector leads

to the same allocation outcome, equivalently ai(bi, b−i) ∈ {0, 1}. However, we can prove

that even if we relax U-DSIC to U-BNIC, no deterministic U-BNIC and 1-SCP TFM that

satisfy mild conditions can achieve positive miner revenue, indicating that the randomness

in our main mechanism is necessary. The formal discussion is in Appendix B.2.

An intuitive explanation about how this works is as follows: to construct a U-BNIC TFM

we essentially “adjust” the users’ payments from a U-DSIC mechanism in a way that increases

the miner revenue while preserving U-BNIC and 1-SCP (via the auxiliary mechanism method

discussed in Section 4.4); however in a deterministic mechanism, the payments of users with

ai(bi, b−i) = 0 are fixed at 0 and cannot be adjusted, rendering the auxiliary mechanism

method inapplicable.

4.4 The Auxiliary Mechanism Method

In this section, we introduce our main technique to construct the desired U-BNIC mechanism,

named as auxiliary mechanism method. We will make the connection between BNIC and

DSIC mechanisms by developing a decomposition of many U-BNIC TFMs into an auxiliary

U-DSIC TFM and a so-called variation term. In light of this, we develop Theorem 4.2,

the key theorem of this section, to provide sufficient conditions for any combination of an

auxiliary U-DSIC TFM and a variation term to form a desired TFM that is simultaneously

U-BNIC and 1-SCP (Section 4.4.1 and Section 4.4.2). Our Theorem 4.2 will provide a general
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framework to facilitate the construction of our desired U-BNIC TFMs, and we will discuss

more about this framework in Section 4.4.3. Finally, in Section 4.4.4 and Appendix B.3, we

will provide more explanations and concrete examples to help the readers understand our

auxiliary mechanism method, which, however, is not a pre-requisite of the constructions in

the later sections.

4.4.1 The Dominant Auxiliary of a BNIC TFM and Their Relations

For simplicity, let us first consider the mechanism on the users’ side, and recall the famous

Myerson’s Lemma [70] that characterizes the sufficient and necessary condition for a TFM

to be U-DSIC, stated as follows. (We note that the original Myerson’s Lemma is stated for

auctions. However, if we only focus on the users’ incentive compatibility constraints, a TFM

reduces to an ordinary auction. Indeed, in our statement of Lemma 4.1, the miner’s revenue

function r is irrelevant.)

Lemma 4.1 (Myerson’s Lemma [70]). Any TFM M = (a, p, r) is U-DSIC if and only if the

following conditions are satisfied.

• Monotone allocation: ai(·, b−i) is monotonic non-decreasing,

• Constrained payment function:

ai(bi, b−i)pi(bi, b−i)

=

∫ bi

0

t
∂ai(t, b−i)

∂t
dt+ ai(0, b−i)pi(0, b−i).

(4.6)

Motivated by Lemma 4.1, for any monotonic non-decreasing allocation rule a, we define

a payment rule p to be its dominant association. In particular, we set

pi(bi, b−i) =


∫ bi
0 t

∂ai(t,b−i)

∂t
dt

ai(bi,b−i)
, ai(bi, b−i) > 0

0, ai(bi, b−i) = 0

. (4.7)

Since our definition Eq. (4.7) satisfies the condition in Eq. (4.6), for any monotonic non-

decreasing a, together with its dominant association p, we get a U-DSIC mechanism (a, p, 0).
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(The miner reward function here is set to be constantly 0 only for illustration purpose. It

could be a different r.) We also note that there seems to be little freedom for the payment

rule p in order to form a U-DSIC TFM with a. Indeed, pi(bi, b−i) is relevant only when

ai(bi, b−i) > 0 (i.e., when the i-th bidder has a chance to be confirmed). In this case,

if we additionally add the natural boundary condition pi(0, b−i) = 0 (similar to the NFL

assumption), then pi(·, b−i) defined in Eq. (4.7) is the unique solution to Eq. (4.6).

For any U-BNIC mechanism M̃ = (a, p̃, r̃) with monotonic non-decreasing a, we let M =

(a, p, 0) to be its dominant auxiliary mechanism where p is the dominant association of a.

Let us compare the payment rules of the two mechanisms and define a “payment difference”

function that denotes the over-payment of each user according to M̃ compared to M , as

θi(bi, b−i) = ai(bi, b−i)(p̃i(bi, b−i)− pi(bi, b−i)). (4.8)

Note that the Revenue Equivalence Theorem indicates that for the same i.i.d. path-connected

distribution of valuations and given boundary conditions, all BNIC mechanisms with the

same allocation rule should have the same expected payment for a bidder with a fixed

valuation (where the expectation is taken over the valuation of the other bidders). Since

M = (a, p, 0) is a DSIC mechanism and therefore also BNIC, we have that M̃ = (a, p̃, r̃)

and (a, p, 0) make the same expected payment for any bidder the fixed valuation. Formally

for any bidder i, we have that

Eb−i∼V−i
[θi(bi, b−i)] = 0, (4.9)

which marks the close relation between the BNIC mechanism M̃ and its dominant auxiliary

M .

4.4.2 The Auxiliary-Variation Decomposition

We have just shown that a U-BNIC mechanism M̃ = (a, p̃, r̃) has a corresponding dominant

auxiliary U-DSIC mechanism M = (a, p, 0) (when a is monotone) and defined their payment

difference to be θ defined in Eq. (4.8). Formally, we summarize this decomposition and make
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the following definition.

Definition 13 (Auxiliary-Variation Decomposition). Given a mechanism M̃ = (a, p̃, r̃)

where a is monotonic non-decreasing, we set up the auxiliary mechanism M = (a, p, 0)

and the variation term T = (θ, r̃). Suppose we have the following conditions met, we call

(M,T ) an auxiliary-variation decomposition of M̃ and also write M̃ =M + T for short.

1. In the auxiliary mechanism M = (a, p, 0), p is the dominant association of a.

2. The variation term T = (θ, r̃) satisfies that p̃i(bi, b−i) = pi(bi, b−i) +
θi(bi,b−i)
ai(bi,b−i)

, where

we require that θi(bi, b−i) = 0 whenever ai(bi, b−i) = 0 and treat 0/0 as 0.

We will use Definition 13 in a reverse way: given a TFM M = (a, p, 0) such that p is

the dominant association of a, if we could design a variation term T = (θ, r̃) that satisfies

the additional admissibility conditions, then we would expect that M̃ = M + T is not only

U-BNIC but also 1-SCP. Formally, we define the admissibility conditions as follows.

Definition 14. We call the variation term T = (θ, r̃) admissible if it satisfies the following

conditions for every b.

r̃(bi, b−i)− r̃(0, b−i) = θi(bi, b−i), (4.10)

Eb−i∼V−i
[θi(bi, b−i)] = 0. (4.11)

We note that the second admissibility condition (Eq. (4.11)) derives from Eq. (4.9) which

is necessary for the composed TFM M̃ to be U-BNIC. The first admissibility condition

(Eq. (4.10)) is key to guarantee the 1-SCP property, which will be further explained in

Section 4.4.4.

The following theorem states that the admissibility conditions for the variation term are

enough to guarantee the composed TFM is U-BNIC and 1-SCP, and is the basis of our TFM

constructions later.

Theorem 4.2. Suppose the variation term T is admissible. For any auxiliary mechanism M

that may form an auxiliary-variation decomposition with T , the composed TFM M̃ =M +T

is U-BNIC and 1-SCP.
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The formal proof of Theorem 4.2 is deferred to Appendix B.4.1.

4.4.3 Using the Auxiliary-Variation Decomposition to Construct TFMs

Given a U-DSIC TFM M = (a, p, 0) where a is monotonic non-decreasing and p is the

dominant association of a, it is trivial to see that T⊥ = (0, 0) is a trivial admissible variation

term and M+T⊥ = (a, p, 0) is both U-BNIC and 1-SCP. However, in this trivial construction,

the miner revenue is always 0, which is not desirable.

In order to achieve a larger miner revenue, we would like to explore more choices of M̃ .

Now, Theorem 4.2 provides an approach to create a class of U-BNIC and 1-SCP TFMs based

on M , so that we could hope to find a desired TFM from this class (e.g., with large miner

revenue, and other properties such as UIR, BF, etc.). In particular, for any fixed M , we will

be able to able to perturb the payment function (via θ) and create more design choices for r̃,

which jointly enrich the space of admissible variation terms {T}, as well as the corresponding

class {M̃} of the composed U-BNIC and 1-SCP TFMs, thanks to Theorem 4.2.

One nice thing about the above approach is that it is almost modular in the design

of the auxiliary mechanism M and the variation term T . We note that the constraints

for M are almost independent of that for T , while the only correlating constraint is that

ai(bi, b−i) = 0⇒ θi(bi, b−i) = 0, which is very mild and holds for most natural choices of M

and T . This modular framework decouples our design tasks for M and T , greatly reduces

the design complexity and renders our final mechanism more interpretable.

To describe more details about our construction framework, note that we would like to

construct a TFM that also satisfies the UIR and BF conditions. Note that the auxiliary

M(a, p, 0) always satisfies UIR, and the zero miner revenue indicates it also satisfies BF.

Now, intuitively, if we make the variation term T “small enough” so that M̃ = M + T is

close to M , M̃ is also likely to satisfy UIR and BF conditions, although having lower miner

revenue as well. We further notice that the admissibility condition of T is scale-free, i.e., if

T = (θ, r̃) is admissible and for any h > 0, hT = (h · θ, h · r̃) is also admissible. Therefore,

we will construct our desired TFM along the following steps.

1. Construct an allocation rule a, derive the corresponding dominant association p and
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the auxiliary TFM M = (a, p, 0).

2. Find a “good” admissible variation term T = (θ, r̃).

3. Compute the (approximately) optimal h so that M + hT maximizes miner revenue

while still obeying UIR and BF conditions.

In Sections 4.5–4.6, we will present our constructions of M and T , which, together with

the optimal choice of h, can achieve a constant-fraction approximation of the optimal miner

revenue (with the desired properties: U-BNIC, 1-SCP, UIR, BF, etc.).

4.4.4 Further Explanation of the Condition Eq. (4.10).

In this part, we explain the relationship between the payment difference function θ and the

miner revenue function r̃ in an admissible variation term, as well as the condition Eq. (4.10)

for admissibility.

To characterize the properties of the TFM M̃ , we first look into the relations between p̃

and r̃. Recall that in our model, users and the miner have different information on the bids:

a user only knows the distribution of other users’ valuations (and bids, if the mechanism

is U-BNIC), but the miner knows all bids accurately. Therefore, in mechanism M̃ , for

fixed b−i, truthfully bidding vi does not guarantee to maximize user i’s utility ũ(bi, b−i; vi)

(which is defined to be ai(bi, b−i) · (vi − p̃i(bi, b−i)) following the definition in Eq. (4.2)),

but it must maximize the total utility of her and the miner, as ũ(bi, b−i; vi) + r̃(bi, b−i), so

that the miner is not incentivized to ask her to deviate. Therefore, if we further assume

smoothness for simplicity (a formal proof without the smoothness assumption is provided in

Appendix B.4.1), we have

∂

∂bi
(ũ(bi, b−i; vi) + r̃(bi, b−i))

∣∣∣∣
bi=vi

= 0. (4.12)

However, in the auxiliary TFM M , which is U-DSIC, bidding bi = vi maximizes user i’s
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utility, hence

∂

∂bi
ui(bi, b−i; vi)

∣∣∣∣
bi=vi

= 0. (4.13)

Since TFMs M̃ and M have the same allocation rule, users’ utilities only differ in

payments, we have ũ(bi, b−i; vi) = u(bi, b−i; vi) − θi(bi, b−i). Therefore, we get the relation

between θi(bi, b−i) and r̃(bi, b−i):

∂

∂bi
θi(bi, b−i) =

∂

∂bi
r̃(bi, b−i). (4.14)

That is, if user i would benefit from an infinitesimal deviation from truthful bidding, the

miner would lose the same amount in turn, so that the miner has no incentive to let user

i deviate, even though she has additional information about other users’ bids. With the

boundary condition p̃i(0, b−i) = 0 (thus θi(0, b−i) = 0), we get

θi(bi, b−i) = r̃(bi, b−i)− r̃(0, b−i), ∀i.

This characterizes the relation between user payments and miner revenue in 1-SCP TFMs,

and also shows the need of condition Eq. (4.10) in an admissible variation term.

Following the discussion of this part, we can actually find a critical challenge in

constructing an admissible variation term, and develop an alternative field-theoretic

perspective of the admissibility condition. The detailed discussion is in Appendix B.3.

4.5 The Proposed Mechanism for Block Size 1

In this section, we consider the case with block size k = 1, where exactly one transaction is

confirmed, to give a simple and intuitive understanding of our mechanism. We follow the

pipeline of auxiliary mechanism method in construction. In Section 4.5.1 we construct the

auxiliary mechanism named soft second-price mechanism, and in Section 4.5.2 we compute

the variation term, thus finishing the construction of the proposed mechanism and compute
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Mechanism 1 Auxiliary Mechanism for block size 1

ai(bi, b−i) =
embi∑n
j=1 e

mbj
(4.15)

pi(bi, b−i) = bi −
∑n

j=1 e
mbj

membi
· ln

∑n
j=1 e

mbj

1 +
∑

j ̸=i e
mbj

(4.16)

r(b) = 0. (4.17)

its miner revenue.

4.5.1 Auxiliary: the Soft Second-Price Mechanism

The second-price auction mechanism has been widely used in traditional auctions, in which

the highest bidder gets confirmed but pays the second-highest bid. However, as we prove that

any deterministic TFM which is U-BNIC and 1-SCP satisfying mild assumptions has non-

positive miner revenue (Appendix B.2), we try to introduce randomness into the allocation

rule.

Here we consider the widely used multinomial logit choice model in which the choice

probability of an item is proportional to the exponential of a parameter m times its value.

If we set the m to infinity, then the item with the highest value is deterministically chosen,

coinciding with the allocation rule of second-price auction; if we set m to zero, then all items

are randomly chosen with uniform chances. For m ∈ (0,+∞), the choice is random, but

higher-valued items are more likely to be chosen.

As a basis of our main mechanism, we first develop a U-DSIC and 1-SCP mechanism

named soft second-price mechanism, which is the auxiliary mechanism of our proposed TFM.

It adopts the multinomial logit choice model as the allocation rule. After fixing the allocation

rule a, we derive the corresponding dominant association p (according to Eq. (4.7)), and form

the auxiliary mechanism M = (a, p, 0), which is explicitly presented in Mechanism 1.

One good thing about our auxiliary mechanism is that every entry of the allocation

function a is always positive for all m < ∞. Therefore, it automatically satisfies the
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requirement in the second item of Definition 13 and can be combined with any variation

term (to be designed soon) in our auxiliary-variation decomposition.

Although the soft second-price mechanism has zero miner revenue, we can modify it via

the auxiliary mechanism method that preserves U-BNIC and 1-SCP properties and yields

positive expected miner revenue, as in Section 4.5.2.

4.5.2 The Variation Term and Our Proposed Mechanism for Block Size 1

Following the auxiliary mechanism method in Section 4.4, we can construct a mechanism

M̃ = (a, p̃, r̃) via the composition of its auxiliary mechanism M and the variation term

T = (θ, r̃). In this section, we construct the variation term of our proposed mechanism.

When the distributions of all users’ valuations are i.i.d., i.e. V = V1 × V2 × · · · × Vn and

∀Vi = V0 has identical pdf ρ : [0, 1]→ [0,+∞), we denote

cρ =

∫ 1

0

ρ2(t)dt. (4.18)

Now, for any scaling parameter h ∈ [0,+∞), we construct T = (θ, r̃) as follows. The

intuition in the construction is elaborated in Appendix B.3.3.

θi(bi, b−i) = −
1

2
hb2i

( ∑
j ̸=i b

2
j

cρ(n− 1)
− 1

)
, (4.19)

r̃(b) = 1

2
h

(
n∑

i=1

b2i −
∑

1≤i<j≤n b
2
i b

2
j

cρ(n− 1)

)
. (4.20)

As a sanity check, we note that r̃ is the potential of Dθ (as in Appendix B.3). Formally,

the following lemma verifies that the above variation term T is admissible. The proof of

Lemma 4.2 is deferred to Appendix B.4.2.

Lemma 4.2. The variation term T = (θ, r̃) defined in Eqs. (4.19-4.20) is admissible.

Now we combine the auxiliary mechanism M defined in Mechanism 1 and our variation

term T to form the mechanism M̃ = (a, p̃, r̃) = M + T , which is explicitly presented in
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Mechanism 2 Transaction Fee Mechanism for block size 1

ai(bi, b−i) =
embi∑n
j=1 e

mbj

p̃i(bi, b−i) = bi −
∑n

j=1 e
mbj

membi

(
ln

∑n
j=1 e

mbj

1 +
∑

j ̸=i e
mbj

+
1

2
hmb2i

( ∑
j ̸=i b

2
j

cρ(n− 1)
− 1

))

r̃(b) = 1

2
h

(
n∑

i=1

b2i −
∑

1≤i<j≤n b
2
i b

2
j

cρ(n− 1)

)

Mechanism 2. (We assume n ≥ 2. If n = 0 then nobody can be confirmed and there is no

payment, and if n = 1 then we set (a, p̃, r̃) = (1, 0, 0).)

By Lemma 4.2 and Theorem 4.2, we have that the TFM M̃ is U-BNIC and 1-SCP for all

h ∈ [0,+∞). We can also compute the expected miner revenue as follows.

Eb∼V [r̃(b)] =
1

4
hncρ > 0. (4.21)

From Eq. (4.21), we see that the expected miner revenue is always positive and it grows

linearly with our scaling parameter h.

However, we have to be careful about choosing the value of h. Intuitively, the value of

h describes the extent of perturbation from the original U-DSIC mechanism, and when the

perturbation is too large, the individual rationality (pi(bi, b−i) ≤ bi) and budget feasibility

properties may not hold. Actually, since the block size is 1, the payment cannot exceed

the valuation of the accepted bid. Then we have Eb∼V [r̃(b)] ≤ 1. Therefore, we have the

following natural upper bound for h:

h ≤ O(1/(cρn)). (4.22)

For the best miner revenue, we want to make h as large as possible while keeping the

mechanism feasible. Fortunately, for fixed cρ, we have an estimation of optimally feasible

h that enables a constant approximation ratio of the optimal revenue while preserving UIR
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and BF constraints. Hence, in the setting of block size 1, we can design a TFM that satisfies

desirable incentive properties and has a constant fraction of optimal revenue. The formal

result is:

Theorem 4.3. For n ≥ 2, we consider Mechanism 2 with parameter m = 1. Then for any

h ∈ [0, 2cρ(n−1)2

en3 ], the corresponding mechanism M̃ = (a, p̃, r̃) is U-BNIC, 1-SCP, UIR and

BF.

Furthermore, for any C ∈ [0, 1), the mechanism is (C, 6C+5
1−C2 )-U-SP.

The proof of Theorem 4.3 is deferred to Appendix B.4.3. Note that when we set h =

2cρ(n−1)2

en3 , the expected miner revenue is 1
4
hncρ =

c2ρ(n−1)2

2en2 = Θ(c2ρ). As the optimal miner

revenue is at most max{vi} ≤ 1, for fixed distribution (fixed cρ), our mechanism yields

a constant-ratio approximation of the optimal miner revenue for n → ∞. Particularly,

for the case of uniform distribution with cρ = 1
3

and n → ∞, our approximation ratio is
1

18e
. Furthermore, the U-SP results show that for large n, a user cannot gain more utility

unless she injects as many fake transactions as the total amount of honest transactions

competing for the block, which is unrealistic for the real-world blockchain ecosystem. This

result also matches with a basic concept of blockchains: the security of a blockchain system

is fundamentally based on the assumption that (at least) 50% of participants are honest.

4.6 Mechanism for General Block Size k

In most blockchains, a block usually contains multiple transactions. Therefore, it is desirable

to extend our Mechanism 2 to general block size k. Recall that when the block size is 1, we

adopted a simple soft second-price mechanism as the auxiliary. However, it seems trickier

to extend this auxiliary to a general block size k, as the softmax function does not have a

straightforward extension for soft-top-k. In Section 4.6.1, we will work on the details of the

auxiliary mechanism for general block size k. The high-level idea of this step is natural – we

adopt a k-step weighted sampling without replacement approach [75] to confirm the k bids

in a block, where in each step, we still apply the logit choice rule.

Once we figure out the details of the allocation rule a for general block size k, the rest
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construction will follow our auxiliary mechanism – We first straightforwardly compute its

dominant auxiliary mechanism M = (a, p, 0) where the corresponding dominant association

p is defined by Eq. (4.7). Then, we will still use the variation term T defined previously in

Section 4.5.2, and combine the auxiliary and the variation term to derive the final mechanism.

In Section 4.6.2, we will show that the generalized mechanism enjoys the same incentive

compatibility properties as the basic version (for block size 1). We will also analyze the

expected miner revenue of the generalized mechanism.

4.6.1 Allocation Rule: Weighted Sampling without Replacement

In this section, we assume the bidding vector b and block size k are fixed. For bidder

i ∈ B = [n], we set her weight wi = embi . Now we compute ai, the probability user i has her

transaction confirmed.

Denote δt(i) as the probability that user i in the t-th round and W =
∑n

i=1wi, then

δ1(i) =
wi

W
. For fixed t ≥ 2, we consider j = (j1, · · · , jt) as the sampling vector describing

the outcome of the weighted sampling without replacement in the first t rounds, in which js
is the user confirmed in the s-th round, and denote J as the distribution of j. Therefore,

we get δt(i; bi, b−i) = Prj∼J [jt = i].

We use the notation δt(i) = δt(i; bi, b−i) when (bi, b−i) is fixed, and denote Jt(i) =

{j is a sampling vector : jt = i}, then ∀j ∈ Jt(i), denote δt(i; j) = Pru∼J [u = j], then

we have

δt(i) =
∑

j∈Jt(i)

δt(i; j). (4.23)

Note that δt(i; j) denotes the probability that the sampling outcome is (j1, j2, · · · , jt−1, i),
thus the probability is

δt(i; j) =
wj1

W
· wj2

W − wj1

· · · · · wi

W − wj1 − · · · − wjt−1

. (4.24)
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Since we know that

ai =
k∑

t=1

δt(i), (4.25)

the allocation rule a can be computed from Eqs. (4.23-4.25). According to Eq. (4.7), we

compute the corresponding dominant association payment rule p̃. We use the same variation

term T as in Section 4.5.2. Thus, the final TFM can be described as in Mechanism 3 (and we

note that Mechanism 2 exactly the same as Mechanism 3 when k = 1). Also note that every

entry of our constructed allocation rule a is always positive, and therefore the mechanism is

well defined.

Mechanism 3 Transaction Fee Mechanism for general block size k

ai(bi, b−i) =

k∑
t=1

δt(i; bi, b−i)

p̃i(bi, b−i) =
1

ai(bi, b−i)

[
ai(bi, b−i)bi −

∫ bi

0
ai(t, b−i)dt−

1

2
hb2i

( ∑
j ̸=i b

2
j

cρ(n− 1)
− 1

)]

r̃(b) = 1

2
h

(
n∑

i=1

b2i −
∑

1≤i<j≤n b
2
i b

2
j

cρ(n− 1)

)

4.6.2 Estimation of h: How Much Revenue Can Miner Get?

For the case of general block size k, we also have a similar result on the value of h, which

additionally requires the number of users n to be at least
(

e
e−1

+Θ(1)
)
k ≈ 1.582k. Hence,

for general block size k, as long as n ≥ 1.582k, we can still design a TFM that satisfies

desirable incentive properties with a constant fraction of optimal revenue. The formal result

is shown below:

Theorem 4.4 (Main Theorem). For any block size k and any parameters m,h ∈ [0,+∞),

the mechanism M̃ = (a, p̃, r̃) defined in Mechanism 3 is U-BNIC and 1-SCP. For any fixed

λ0 >
e

e−1
≈ 1.582, and any
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Figure 4.3: The plot of g(λ0) in Theorem 4.4.

n ≥ max{λ0k, 30}, if we set m = min
{

1
2

ln 1

ln λ0
λ0−1

, 1

}
, then for every

h ∈
[
0, g(λ0)

2kcρ(n− 1)

en2

]
,

where

g(λ0) =
m ·max

{
1−

√
ln λ0

λ0−1
, 1− e ln λ0

λ0−1

}
e
m−1+ e

0.9λ0−1

,

then our Mechanism 3 M̃ is UIR and BF.

Furthermore, for any C ∈ [0, 1), the mechanism is
(
C,O( 1

1−C
)
)
-U-SP.

The proof of Theorem 4.4 is technically complicated and deferred to Appendix B.4.4. We

plot g(λ0) in Figure 4.3 and it holds that limλ0→+∞ g(λ0) = 1. Combined with E[ ˜r(b)] =
1
4
hncρ, the expected miner revenue is Θ(g(λ0)c

2
ρk). Because the optimal revenue for block

size k is at most kmax{vi} ≤ k, for fixed cρ > 0 and λ0 >
e

e−1
, our mechanism yields a

constant-factor approximation of the optimal revenue as long as n > max{λ0k, 30}. While

Mechanism 2 is essentially a special case of Mechanism 3 with k = 1, we can also notice that

when k = 1 and n → ∞, the range of h in Theorem 4.4 is [0, (1 − o(1))2cρ
en
], matching with

the result of Theorem 4.3.
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4.7 Additional Properties of Our Mechanism

In this section, we discuss the incentive and revenue properties for the miner in our proposed

TFM. In Section 4.7.1, we show that our proposed TFM is almost miner incentive compatible

(MIC) and it is impossible to achieve the strict MIC property for any TFM. In Section 4.7.2

we show that although the miner may get negative revenue in our TFM, it is only of a

negligible probability and the miner will actually get a stable revenue close to the expectation.

Therefore, our TFM can satisfy the miner’s expectation on stable mining rewards in practice.

4.7.1 Almost Miner Incentive Compatibility

In the previous parts of our paper, we mainly focused on the prevention of an individual

user’s deviations and the miner-and-single-user collusion (i.e., the deviation set {U-UB, U-

FT, MU1-UB} in Table 4.1). We now show that our TFM is also able to greatly reduce the

additional miner utility derived from injecting and deleting (a limited number of) bids, and

therefore achieving an almost MIC property.

In particular, let us first fix the block size k and the number of users n. Since the injection-

and-deletion deviation may change the n parameter presented to the mechanism, we have

to consider a variable-bid-size TFM M̃ (as in Definition 7’). To construct M̃ , we follow

the method described above Eq. (4.1) – we first choose a parameter m > 0; for each integer

η ≥ 0, we also choose a parameter hη > 0 so that M̃η is fully determined following the

description of Mechanism 3. In order to establish our almost MIC property, we need to

choose {hη} in a way so that there exists L satisfying

L =
hηη

cρk
∀η. (4.26)

Note that it is possible to appropriately set {hη} to meet the above condition while each M̃η

also satisfies the conditions in Theorem 4.4 (for η > λ0k, where λ0 is defined in the theorem

statement). We finally let M = (a, p̃, r̃) = ∪η{M̃η} as formally defined in Eq. (4.1).

We also need to characterize the degree of injection-and-deletion deviation by the miner.

For any positive integer ∆, we denote B∆(b) as the set of all bidding vectors generated
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via injecting and deleting a total of at most ∆ transactions to/from b. Given the original

bidding vector b, for any b′ ∈ B∆(b) that could result from the miner’s injection-and-deletion

deviation, we note that change to the miner’s utility consists of the following two parts:

1. the change of the miner’s reward: r̃(b′)− r̃(b);

2. the cost for the miner to inject fake bids:
∑

b′j∈b′\b ũj(b
′
j, b′

−j; 0) =

−
∑

b′j∈b′\b ai(b
′
j, b′

−j) · p̃j(b′j, b′
−j), where we extend the definition in Eq. (4.2) to

our TFM sequence M̃ = (a, p̃, r̃).

Note that the miner does not need to directly pay any cost for deleting a bid, but her reward

r̃(·) may be changed due to this deletion.

We first define the (strict) Miner-Incentive-Compatibility (MIC) notion as follows:

Definition 15 (Miner-Incentive-Compatibility (MIC)). Suppose there are n real users and

the block size is k. A variable-bid-size TFM M̃ = ∪η{M̃η} = (a, p̃, r̃) satisfies the MIC

property if and only if for any bidding vector b and ∆ ≥ 1, we have

sup
b′∈B∆(b)

r̃(b′)− r̃(b) +
∑

b′j∈b′\b

ũj(b
′
j, b′

−j; 0)

 ≤ 0.

Relaxing from the strict MIC notion, are now able to introduce the almost MIC property

for our TFM M̃ . We show that for if ∆ = o(n) (i.e., the number of injected and deleted

bids is a tiny fraction of the total number of users), then, as n → ∞, with overwhelming

probability, the additional utility for the miner is also o(1). Particularly, by injecting or

deleting ∆ transactions when the total number of honest users is n, with high probability

among the distribution of bids, the miner cannot gain an increase of revenue above O(k∆4/3

n4/3 ).

Hence, for example, if the miner can inject a constant number of fake transactions (without

being caught, as discussed in Appendix B.1), the additional revenue she may get is O( k
n4/3 )

which is negligible when n is large. Formally, we have the following theorem.

Theorem 4.5 (Our TFM is Almost MIC). Suppose there are n real users and the block

size is k so that n > λ0k + ∆. Let the variable-bid-size TFM M̃ = ∪η{M̃η} = (a, p̃, r̃) be
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defined above with the L parameter satisfying Eq. (4.26). There exist universal constants

CM0, CM1, CM2 > 0 such that for any ϵ ∈ (0, 1
2
), if n ≥ max

{
CM1∆, CM2 log3 1

ϵ

}
, we have

that

Pr
b∼V

 sup
b′∈B∆(b)

r̃(b′)− r̃(b) +
∑

b′j∈b′\b
ũj(b

′
j , b′

−j ; 0)

 > CM0L ·
k∆4/3

n4/3

 < ϵ. (4.27)

In other words, Theorem 4.5 states that given a moderately large n, with probability at

least (1− ϵ) (over the realization of the n real user valuations), the additional miner utility

that could be gained from injecting and deleting at most ∆ bids is at most CM0L· k∆
4/3

n4/3 , which

is o(1) for ∆ = o(n) and fixed k, L. This result is quite non-trivial as one would naturally

expect the relative revenue advantage should be Θ(∆/n) for usual (incentive compatible)

mechanisms. For example, in the k-item second-price auction with valuation distribution

Unif[0, 1], the expected (k + 1)-th price is n−k
n+1

, but if the miner injects a fake bid to be

infinitesimally lower than the k-th bid, the expected price increases to n−k+1
n+1

, gaining an

Θ(1/n) relative advantage via injecting one bid. It is also more useful since it gives additional

incentive restrictions to the miner when we narrow the range of “acceptable deviations” for

the miner. Here, the notion of the acceptable deviation is the range of small ∆ (compared

to n), as a large amount of injected or missing transactions (greater than the acceptable

threshold) can be detected by the blockchain system via cryptographic schemes and the

miner would be penalized for injection/deletion deviation. Please refer to Section B.1 for

more details. The proof of Theorem 4.5 is deferred to Appendix B.4.5.

On the other hand, we can show that achieving strict MIC together with the main

strategy-proof properties studied in this paper (U-BNIC and 1-SCP) is impossible if we

additionally assume the natural NFL condition defined in Section 4.3.4 (Shi et al. [44] have

independently proven a similar result). In particular, we prove that any TFM satisfying the

above-mentioned properties has non-positive expected miner revenue, even if we only allow

the miner to inject one zero-bidding fake transaction in the MIC property. Formally, we

have the following theorem.

Theorem 4.6 (Impossibility of MIC). Suppose there are n real users and the block size is k.
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Consider any variable-bid-size TFM M̃ = (a, p̃, r̃). Assume that for any η ∈ {1, 2, . . . , n+1},

the natural restriction (formally defined in Section 4.3.2) of M to a regular TFM for η bids is

U-BNIC and 1-SCP, and NFL. If r̃(b, 0)−r̃(b) ≤ 0 holds for all b ∈ [0, 1]0∪[0, 1]1∪· · ·∪[0, 1]n,

then we have that Eb∼V [r̃(b)] ≤ 0.

The proof of Theorem 4.6 is deferred to Appendix B.4.6. Nevertheless, if we do not allow

the miner to inject fake transactions, but allow her to delete existing transactions, whether

there exists a TFM that is U-BNIC, 1-SCP and {M-TD}-proof remains open.

4.7.2 Almost Miner Individual Rationality and Stability of Miner Revenue

In previous sections, we have discussed the expected miner revenue, which is in general

a constant-fraction approximation of optimum, which naturally implies interim Miner

Individual Rationality (MIR). In this section, we will be concerned about the guarantee

on the worst-case miner revenue. We define the (ex-post) MIR as a worst-case specification

for the miner, which requires that the miner revenue is always non-negative no matter how

the users bid. Formally,

Definition 16 ((Ex-Post) Miner Individual Rationality). Suppose there are n users and

the block size is k. A TFM M̃ = (a, p̃, r̃) satisfies the Miner Individual Rationality (MIR)

property if and only if r̃(b) ≥ 0 holds for all b ∈ [0, 1]n.

The MIR condition requires that the miner revenue is non-negative for every realization

of the bidding vector b. Unfortunately, our Mechanism 3 do not satisfy such a strong

condition. Recall that, in Mechanism 3, we have r̃(b) = 1
2
h
(∑n

i=1 b
2
i −

∑
1≤i<j≤n b2i b

2
j

cρ(n−1)

)
where

h > 0. For the particular bidding vector b = (1, 1, . . . , 1) ∈ [0, 1]n, we have that r̃(b) =

h
2
·
(
n− n(n−1)/2

cρ(n−1)

)
= hn

2
·
(
1− 1

2cρ

)
.

We now observe that, for the user valuation distribution V0 with cρ ∈ (0, 1/2) (for example,

the uniform distribution over [0, 1] leads to cρ = 1/3), our Mechanism 3 is not MIR. In fact,

we have the following sufficient and necessary condition of when our mechanism is MIR, the

proof of which is deferred to Appendix B.4.7.

Theorem 4.7. Our Mechanism 3 is MIR if and only if cρ ≥ 1
2
.
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Nevertheless, even when cρ < 1/2, so long as it is not too small, we are able to show that

the miner gets a non-negative revenue with overwhelming probability, and the probability

that the miner is “not lucky” to receive a negative revenue diminishes exponentially as the

growth of n. Formally, we have the following theorem.

Theorem 4.8 (Concentration of Miner Revenue). Fix n to be the number of users. For

any block size k, let the TFM M̃ = (a, p̃, r̃) be defined according to Mechanism 3. Assume

that each user’s bid follows the i.i.d. distribution V0 and let cρ be correspondingly defined

according to Eq. (4.18). For any λ > 0, we have that Pr
[

r̃(b)
E[r̃(b)] ≤ 1− λ

c2ρn

]
≤ 2 exp(−λ).

The proof of Theorem 4.8 is deferred to Appendix B.4.8. Let λ = c2ρn, we immediate get

the almost-MIR property of our mechanism:

Corollary 4.1 (Almost Ex-Post Miner Individual Rationality). Following the setup in

Theorem 4.8, we have that Pr [r̃(b) < 0] ≤ 2 exp(−c2ρn).
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Figure 4.4: The diminishing probability of MIR being violated for the uniform distribution
bi ∼ Unif[0, 1].

From Corollary 4.1, we can see that the probability of r̃(b) < 0 diminishes exponentially as

n increases. As a demonstration, we show the plot of exp(−c2ρn) for the uniform distribution
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bi ∼ Unif[0, 1] in which cρ = 1
3
. Considering the practical scenario that the Bitcoin and

Ethereum blockchains typically have thousands of transactions in each block, in practice

r̃(b) ≥ 0 would indeed hold with overwhelming probability.

Consideration of Mining Costs. In Section 4.3.3 we assume that the miner’s utility

is equal to the miner revenue and ignore the mining costs and block rewards. In actual

cases, we denote r0 as the block reward minus mining cost, and as long as r0 ≥ 0, the

Corollary 4.1 is still valid. In case that r0 < 0, from Theorem 4.8 we see that as long as

E[r̃(b)] ≥ (1+Θ(1))|r0|, the probability that the miner gets a negative utility still diminishes

exponentially with n.

4.8 Discussion

In this chapter, we model each transaction as constant-sized. However, in modern blockchain

systems, transactions – especially with smart contracts in modern applications, have variant

sizes. The knapsack auction problem [76] for the setting of blockchains is still open to future

study.

Our mechanism mainly considers the valuation distributions of bounded supports. While

our methodology may extend to distributions of unbounded supports as long as cρ = E[b2i ] is

finite, the bounded support assumption is necessary for our estimation of h and the revenue

approximation guarantees. Whether it is possible to extend our approach to more general

valuation distributions is also open to future study.

While we assume symmetry of the joint distribution of users’ valuations, the actual

distribution can still be correlated, which is not discussed in our work. Furthermore, in

the real-world scenario, as blockchain users may value the blockchain space depending on

the expectation of the market, they may even have interdependent valuations, as modeled

by the work by Eden et al. [77]. Consideration of correlated or interdependent valuations in

the design of blockchain TFMs can be a challenging but interesting future direction.
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CHAPTER 5

POUW PROTOCOL DESIGN WITH AI MODEL
TRAINING

5.1 Introduction

Blockchain, with prevailing examples as Bitcoin [78] and Ethereum [79], is an emerging

technology that maintains decentralized consensus via a distributed ledger that utilizes

cryptographic techniques to achieve trust and security. To prevent sybil attacks in the

consensus mechanism, the earliest and most conventional way is Proof-of-Work (PoW)

[80, 81, 82, 83] as Bitcoin uses: all “miners” attempt to solve a hash puzzle and the first

miner getting a valid solution wins the access to the block.

However, the huge and inefficient use of energy and severe carbon footprint in the

traditional PoW mechanism draws wide concern and is recognized as heavily controversial for

the environmental impact of the blockchain system [84, 85]. Since May 2021, cryptocurrency

mining and even cryptocurrency trading have been banned in China due to the ecological

concern of energy inefficiency [86]. To address the energy issue, researchers propose

alternative consensus mechanisms, e.g. Proof-of-Stake (PoS) [87, 88, 89] in order to substitute

PoW, but they tend to have inherent drawbacks in security and centralization issues [90]. In

the high-level view of economics, Piketty [91] argued that the phenomenon of r>g, i.e. the

return rate on capital (“stake”) being greater than the rate of economic growth (“work”),

results in wealth concentration and social instability. Indeed, the heavy computation cost

arguably binds the voting power with real-world productivity rather than intangible tokens.

Were the computation made useful, the Proof-of-Useful-Work (PoUW) mechanism would

indeed resolve the energy issue while preserving the decentralization and security of PoW

[92, 93]. On the other hand, there are also positive views on the energy consumption of

PoW mechanisms, e.g. the expansion of energy demand also motivates the development of
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new energy solutions [94]. Since our PoUW mechanism essentially improves the efficiency of

energy consumption instead of eliminating it, in contrast to PoS, our mechanism preserves

this social benefit of PoW in the meantime of improving its sustainability.

In the age in which artificial intelligence (AI) has been becoming one of the most attractive

topics in modern technology, researchers are actively attempting to incorporate machine

learning tasks as PoUW challenges, i.e. Proof-of-Learning (PoL). As a consensus mechanism

for the blockchain system, an ideal design of PoUW should satisfy the following properties:

1. Security: For the security and credibility of the blockchain system, an ideal PoUW

mechanism should have theoretically provable security guarantees against dishonest

behavior.

2. Efficiency: An ideal PoUW mechanism should have a low computational overhead

(redundancy) for energy efficiency, as a main motivation of PoUW.

3. Controllable Difficulty1: As a stable block production time (BPT) is essential for

the blockchain system’s stability [95], an ideal PoUW mechanism should use challenges

with predictable and controllable difficulty.

However, although there have been a series of PoL proposals in the literature (e.g., [96,

97, 98, 99]), as far as we are concerned, none of them could simultaneously satisfy the

three properties above. Particularly, the methodologies of existing PoL mechanisms can be

organized into two classes:

1. Proof-of-Computation: Proving that the training task is honestly done, e.g. [96];

2. Proof-of-Performance: Proving that the output model satisfies required accuracy

on a test dataset, e.g. [97, 98, 99].

The difficulty of designing a desirable PoL mechanism is observed as follows. For Proof-of-

Computation mechanisms, a recent work [100] shows the hardness of efficiently verifying the

correctness of a Proof-of-Computation with provable security guarantees without a further
1The “difficulty” of a PoW challenge can be defined as the (expected) amount of computation needed to

solve it.
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theoretical understanding of deep learning — particularly, the work of Jia et al. [96] is

subject to adversarial attacks [100, 101]. For Proof-of-Performance mechanisms, Hoffmann

[92] argues that it is hard to evaluate the actual difficulty (even possibility) to achieve given

accuracy, leading to a barrier to controllable difficulty. In summary of the existing PoL

mechanisms, we observe a Trilemma of Proof-of-Learning as below:

Trilemma of Proof-of-Learning

It is difficult to design a Proof-of-Learning mechanism that simultaneously satisfies

perfect security, efficiency and controllable difficulty.

In this research, we are motivated to resolve the sustainability issue of blockchain systems

via a Proof-of-Computation mechanism to machine learning model training, and tackle the

trilemma via a delicate relaxation of the security notion. Instead of preventing all attacks

from being conducted without getting detected (byzantine security), we aim to prevent

the attacks from “being useful” with the incentive-security notion, i.e. an attacker cannot

increase their utility via saving computational cost by cheating. Particularly, our mechanism

in which the prover trains with designated random seeds and the verifier verifies random

subsets of stages (as shown in Section 5.4.1-5.4.2) can prevent the attacks of [101] and [100]

in the way as follows. From the stochastic nature of SGD, the verification protocol of [96]

introduces a “tolerance” that allows small discrepancies in verification, which is exploited by

these attacks. As our mechanism replaces the tolerance with designated random seeds2, our

mechanism is enabled to catch their exploits as “dishonest stages” successfully. Furthermore,

our verification mechanism only has an O( logE
E

) relative computational overhead3 for a total

of E epochs with no staking requirement, or O( 1
E
) with a staking requirement comparable

to the block reward, compared to Θ(1) in the work of Jia et al. [96]. For a model of size

|W |, we also improves the communication complexity from Θ(E|W |) to O(E + |W | logE)
2Different types of machines or softwares may have different rounding behavior, but we can enforce high

precision and set a tolerance low enough to prevent any “meaningful” attack.
3The ratio of computational power consumption in verification to computational power consumption in

model training.
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or O(E + |W |), respectively.

From another perspective, the recently rapid development of AI technologies also draws

safety concerns on the trustworthiness of AI models [102, 103, 104, 105]. While studies on AI

alignment (e.g., [106, 107, 108]) address the internal risks of unrobust AI models, attacks by

malicious trainers via corrupting the training process may bypass the alignment measures.

As a recent example, the adversarial attack on ByteDance LLM training by an intern, which

leads to $1.1M loss [109], draws attention to the systematic security of AI model training.

Compared to the Proof-of-Performance paradigm, our Proof-of-Computation mechanism

offers additional practical value as a decentralized surveillance measure of AI model training.

While the Proof-of-Performance mechanism is primarily motivated by the goal of improving

the sustainability of blockchain PoW mining, thus improving blockchain with AI,

the Proof-of-Computation mechanism can also serve as a blockchain-based trustworthy AI

platform, enhancing the security and credibility of machine learning, i.e. simultaneously

securing AI with blockchain.

Furthermore, while most recent research papers on PoUW explicitly or implicitly assume

that problem providers are trusted — so that their proposed system is not completely

decentralized, we are also motivated to consider frontend incentive-security against known-

model and model-stealing attacks even when problem providers and provers are both

untrusted, thus enabling full decentralization and more robustness of the system. (See

discussion in Section 5.2.2)

Since the computational overhead of verification is low, our PoL protocol can be used

for general applications in which the task provider would like to delegate the training/fine-

tuning tasks for remote computation, as a Machine-Learning-as-a-Service (MLaaS) platform.

Nevertheless, the functionality of verification makes the protocol particularly suitable for

applications in which credibility of the model and/or training process is critical. Examples

include AI grading [110, 111], where the transparency and accuracy of the grading model

are essential for educational and hiring processes, and credit evaluation [112, 113], where

the fairness and reliability of the model impact financial decisions. These applications

benefit from PoL’s verification mechanism, ensuring that the models are trained correctly

and securely, thereby enhancing trust in their outputs.
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In light of the security desiderata discussed above, in our paper, we propose an incentive-

secure Proof-of-Learning mechanism with the following contributions consisting of:

1. With trusted verifiers (that are widely assumed in previous works), we propose our

interactive-proof -based basic design satisfying computational efficiency, controllable

difficulty, and incentive-security against dishonest provers for any stochastic

optimization tasks, e.g. stochastic gradient descent (SGD), and also substantially

improves the relative computational overhead of the previous work [96]. (Sections 5.3-

5.4)

2. With untrusted verifiers, we propose a capture-the-flag protocol that preserves all

desired properties in our basic design and additionally achieves incentive-security

against dishonest verifiers. (Section 5.5)

3. We prove the theoretical incentive-security properties of our mechanisms. (Section 5.6)

Then, in Section 5.7, we perform experimental evaluations to show the performance of our

mechanism on real-world ML tasks.

In Appendix C.4, we further discuss on potential augmentations of our mechanism to

ensure model correctness against malicious attacks even from irrational attackers.

Rounds of interaction. Our basic mechanism needs one round of interaction between

the prover and the verifier, and the full mechanism needs two rounds of interaction.

Limitation of our incentive model. While our novel modeling of incentive-security

is a suitable relaxation both due to the Trilemma of Proof-of-Learning and the nature of

blockchain systems whose security depends on economic incentives, our study focuses on the

model of individually rational parties and does not consider collusions between the prover

and the verifier. Nevertheless, the anonymity of blockchain reduces the risk of collusion

due to the difficulty for the prover to predict or identify the identity of the verifier, and

we would leave the expansion of more general incentive models with collusion-proofness for

future study.
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5.2 Background and Related Work

5.2.1 Proof-of-Useful-Work in Literature

The biggest concern of the traditional PoW mechanism is the computation, and essentially,

energy consumption. As discussed by Chen et al. [114], the current energy consumption of

the Bitcoin network is around 120TWh per year, comparable to a medium-sized country,

but the consumption serves no social welfare apart from maintaining the security scheme,

leading to severe social inefficiency. In recent years, the wasteful energy consumption of

blockchains, particularly Bitcoin, has been widely criticized around the world. Particularly,

Vranken [84] empirically discovered that the energy consumption of Bitcoin market is higher

than its long-term benefit; Stoll et al. [85] also noticed the severe carbon footprint of Bitcoin

for sustainability issues.

Aware of the energy and sustainability issues, previous research studied a wide variety of

real-world problems that may serve as Proof-of-Useful-Work (PoUW) challenges. Hoffmann

[92] surveyed the existing projects that incorporate number-theoretical, biological and

machine learning problems into the PoUW mechanism. The survey shows a “more usefulness,

more challenge” phenomenon in the existing works: while the Primecoin [115] has been

the most developed and already deployed on chain, the number-theoretical problem may

be of limited interest for the general public except mathematicians; the Coinami [116]

proposes a solution to solve DNA sequencing problems for PoUW, but it needs a centralized

authority and is not genuinely decentralized; the CoinAI [97] propose to develop a Proof-of-

Learning system which uses the final performance as the certificate, but setting a reasonable

“performance bar” to desired difficulty is a hard (if even possible) task.

In the specific area of Proof-of-Learning (PoL), Jia et al. [96] considered a setting of

a specific threat model, and proposed a PoL mechanism to show that the verification of

SGD training requires two types of parties as provers and verifiers. They aim to design a

mechanism in which an honest certificate generated by the prover can be verified by the

verifier at a low computational cost, while a dishonest certificate (spoof) within the threat

model will be detected by the verifier at a low cost too. In their protocol, the provers report
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the state every k epochs and the verifier checks the largest updates, arguing that within

their threat model, the largest updates tend to be the most suspicious when the dishonest

prover attempts to forge a fake certificate. However, when going beyond that specific threat

model, Zhang et al. [101] showed that attackers can maliciously design spoofs that bypass the

largest-update verification and exploit the tolerance. Furthermore, Fang et al. [100] claimed

that the Proof-of-Learning “is more broken than you think” by demonstrating that realizing

the desired security requirements reduces to solving hard open problems in learning theory,

so that a provably Byzantine-secure PoL is not possible to design until significant progress

in further understanding in deep learning.

In an economic view, the difficulty in designing a cheap but secure verification protocol

of PoL is conceptually related to Goodhart’s Law: “When a measure becomes a target,

it ceases to be a good measure” [117]. Until further understanding of deep learning, no

more efficient method has been found to verify the integrity of training than training it

again. The work of Jia et al. [96], to reduce the computational overhead of the verification,

chose to identify “most suspicious” parts to verify, but when the criteria for suspicion are

deterministically designed, there would constantly be risks that cheaters adversarially design

attacks to bypass the criteria. Therefore, designing an efficient method to deterministically

(or with high probability) catch all cheats in PoL is indeed faced with major difficulties.

In contrast, our research relaxes the security requirement to “incentive-security” in a

game-theoretical setting: we do not need to prevent all attacks, but only need to prevent

attacks from being “worthy”. Intuitively, while all attacks are considered equal in Byzantine

security, they may have different degrees of effects in the economic view. In our design, our

mechanism detects attacks in a stochastic way and “more severe” attacks that potentially

benefit the attackers more, would be caught with higher chances and lead to heavier expected

penalties. In this way, our incentive-secure PoL design can manage to disincentivize rational

agents from cheating.

Another difference between the settings of Jia et al. [96] and our work is that: while

the work of Jia et al. [96] mainly aims to prevent the spoof of a specific PoL to protect

the copyright of the model, we aim to prevent all spoofs that try to cheat the verifier and

claim that the training is correctly done, getting the training reward. Hence, while our work
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adopts a relaxed notion of incentive security, it generally applies to a wider range of attacks

(details discussed in Section 5.3.4).

5.2.2 Settings of Trusted or Untrusted Problem Providers in PoUW
Protocols

Table 5.1: Comparison of Trustworthy AI Protocols on Blockchain

Cryptographic Game-theoretic (existing) Ours
Approach Zero-knowledge Proofs Verification Games Verification Games
Example zkML opML, PoSP Incentive-Secure PoL

Security Cryptographic Mixed-Strategy Nash Eq.
(with few cheaters)

Pure-Strategy Nash Eq.
(with no cheater)

Overhead High (≥ 1000x) Moderate (≥ 1x) Low (≲ 0.1x)

Challenges High overhead,
low scalability Verifier’s Dilemma Communication cost

(for extremely large models)

In the traditional PoW mechanism, e.g. in Bitcoin, the hash puzzle is automatically

generated from the previous block and is unpredictable before the previous block is

confirmed. However, in the paradigm of PoUW, the problem should come from real-world

providers, so can be indeed predictable or even controllable. In particular, malicious parties

can conduct the following attacks:

• Known-model attack: submit a problem to which they already have a solution, and

then submit the solution to claim the block.

• Model-stealing attack: submit a model trained by others (or based on it) and claim

that they trained it on their own.

As far as we are concerned, most research in the literature of PoUW has not considered

the credibility of the problems, i.e. implicitly assumed that the problems are credible and

focus on the prevention of spurious certificates. Besides, Coinami [116] extensively discussed

their system structure that depends on authority nodes and stated that their system is “not

completely decentralized” and argued that it is necessary for usefulness; while the work

of [96] did not consider known-model attack, their solution to model-stealing attack is a

chain-of-trust protocol that also relies on a sort of authorization.
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Nevertheless, to build a robust blockchain system, we are motivated to design a mechanism

in which both problem providers and provers can be untrusted but are incentivized to

behave honestly, which we call frontend-secure. In consideration of frontend-security, Ball

et al. [118] proposed a PoUW mechanism based on Orthogonal Vectors that adds an extra

randomization layer to the PoUW challenge: instead of only requiring the prover to solve

the problem, it requires the prover to solve the problem “in the way the system (randomly)

specifies”, so that even if the prover has a solution beforehand, the transcript may not meet

the requirement of the challenge and the prover still has to compute the challenge again to

pass the verification. The protocol works as follows:

• The system receives the problem A from an untrusted problem provider.

• The system generates a random seed ϕ and transform A to a PoUW challenge C =

C (A, ϕ).

• The prover solves the challenge and gets a certificate c = S(C).

• The verifier verifies the certificate, expecting to get V (C, c) = true.

• The system recovers the solution w = W (C, ϕ) and sends it to the problem provider.

On a high level, the frontend-security of the proposal is based on the one-way reduction

from C to A: it is easy to generate a solution to A from a solution to C, but not in the

inverse direction. While our design is generally different from this work, we indeed adopt the

thought to introduce randomization in the design of PoUW challenges, which is naturally

implementable due to the stochastic nature of the training of deep learning models.

5.2.3 Trustworthy AI and MLaaS on the Blockchain Platform

While the artificial intelligence (AI) has been becoming one of the most attractive topic in

research and industry, the expansion of model sizes and computing source consumption

in machine learning tasks has raised significant concerns about security [119, 120] and

sustainability [121]. The advent of Machine Learning as a Service (MLaaS) [122] has
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democratized access to powerful AI tools, enabling companies and individuals to integrate

advanced machine learning models into their operations without extensive infrastructure.

However, this convenience comes with challenges in ensuring the transparency [123, 124]

and security [125] of these services. Trustworthy AI principles are crucial in this context,

as they advocate for the development and deployment of AI systems that are secure and

accountable [126].

The blockchain, as a decentralized and transparent infrastructure, has an inherent affinity

for applications in trustworthy AI [127]. Furthermore, the innate element of cryptocurrency

tokens can also serve as economic incentives for participation [128].

Three recent methodologies that implement trustworthy AI in the blockchain platform

are zero-knowledge machine learning (zkML) [129], optimistic machine learning (opML)

[130] and Proof-of-Sampling (PoSP) [131]. The method of zkML utilizes the tool of zero-

knowledge proof to secure the integrity of inference, but the nature of zero-knowledge proof

makes the protocol extremely inefficient. The methods of opML and PoSP adopt economic

incentives in the protocol and reduce the computational overheads to one or a few additional

passes of computation, but opML effectively addresses the Verifier’s Dilemma to prevent

verifiers from being lazy when the fraction of dishonest provers is arbitrarily low4, and the

small challenging probability of PoSP leads to high staking requirements of verifiers and

low detection probabilities of cheats, which undermine the user-friendliness and robustness

of the protocol. In comparison, our mechanism has a computational overhead as low as a

small fraction of one training pass, and it utilizes the capture-the-flag protocol to bypass the

Verifier’s Dilemma (See Section 5.5.1 and Theorem 5.1) and prevent lazy verifiers robustly

when there are arbitrarily few or no cheating provers. We show the comparison of the related

protocols in Table 5.1.

Hence, the family of Proof-of-Learning mechanisms, especially in the paradigm of Proof-

of-Computation, not only serves as a fundamental mechanism to maintain the reliability

of blockchain systems but also has the potential for the development of low-overhead

decentralized computing power markets.
4It utilizes constant penalty that works when the fraction ϵ of dishonest provers is at least a small

constant, but does not work uniformly when ϵ→ 0.
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5.3 Preliminaries

In the Proof-of-Learning mechanism, we consider a situation where a prover tries to convince

all parties via a “certificate” that she has honestly completed the training task and is thus

eligible to claim the block reward; the verifier, in turn, is expected to verify the validity of

the certificate to ensure the security of the system. In general, our protocol works as follows:

1. A PoL problem A is assigned.

2. One or more provers work on the problem A, either honestly or dishonestly, until one

prover claims to have solved the problem and posts the PoL certificate c, winning the

competition; other provers lose the competition and have their computing efforts lost

as a sunk cost.

3. The verifier verifies the certificate c, possibly via interactions with the prover, and

reports the verification result.

4. The system processes rewards and penalties accordingly.

In the rest of this section, we briefly discuss the basic components of the protocol.

5.3.1 Modeling of ML Training Tasks

Suppose there is a data distribution D in the form of X × Y , in which X is the input

space and Y is the output space. A machine learning model (abbreviated as “model”) is

a function f : W ×X → Y in which W is the parameter space. In the ML practice, the

parameters are commonly called weights.

The ML training task can be modeled as empirical risk minimization, in which a training

dataset is sampled from the distribution as Dtr ∼ Dn, and we denote Dtr = (d1, · · · , dn) in

which di = (xi, yi). For any data point (x, y) and weight w ∈ W , the model prediction is

f(w, x), and the loss is defined as a loss function L (f(w, x), y). Then, the empirical risk to

minimize is defined as:

L̂(w) =
∑
i∈[n]

L (f(w, xi), yi). (5.1)
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The stochastic gradient descent (SGD) training process consists of a number E of epochs,

and every epoch corresponds to one full pass of the training set. In each epoch e ∈ [E],

the training set is randomly divided into l batches of size m, with n = l ·m. In every step

s = (e−1)m+ j, the corresponding batch, denoted as a subset be(j) of [n], is processed, and

the weight is updated as:

ws = Tη,be(j)(ws−1) = ws−1 − η · ∇L̂be(j)(ws−1). (5.2)

Here, η is a hyper-parameter of learning rate and L̂be(j) is the empirical risk on the batch

be(j), defined as:

L̂be(j)(w) =
∑

i∈be(j)

L (f(w, xi), yi). (5.3)

Therefore, given the batch division as be ∈ B, the training process of epoch e can be

formulated as a mapping Tη : B ×W → W , with

Tη(be, w) = Tη,be(m)(Tη,be(m−1)( · · · Tη,be(1)(w) · · · )). (5.4)

In the rest of this paper, we regard η as a fixed hyper-parameter and denote Tη as T for

simplicity.

5.3.2 Credible (Pseudo-)Randomness Generator

As described above, due to the random choice of batches {be(j)}, the training process T of

stochastic gradient descent, is innately a stochastic process. To verify the correctness

of the training process, the paper of Jia et al. [96] leverages the concentration properties of

the process and introduces tolerance for slight discrepancies in verification. However, the

tolerance can, in turn, be exploited for adversarial attacks (See in [101]).

In Bitcoin, the randomness in the hash puzzle is essentially based on a pseudo-randomness

generator (cryptographic hash) seeded with the last block, so that every party can have a

consensus on the same pseudo-random PoW challenge.

A typical pseudo-randomness generator (PRG) works as follows. Given a random seed ϕ,
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the PRG generates a sequence of rϕ(1), rϕ(2), · · · , and without loss of generality we assume

they are uniformly distributed in [0, 1). Since the PRG is typically based on a finite state

machine, the sequence will eventually repeat after a period. Nevertheless, a “good” PRG

would have a period long enough and pass certain randomness tests, and a PRG that meets

the cryptographical criteria is called “cryptographically secure” [132].

In this paper, we would perform the SGD training with {be} generated from a

cryptographically secure PRG with seeds generated from the previous block, so that the

prover and verifier would run with the same pseudo-random sequences and get exactly the

same result for the same epoch. On the other hand, as the sequence is not predictable until

the seed ϕ is generated, even if a strategic party submits a task with a known model and

training process, as the protocol requires the prover to train with the given random seed,

the prepared model or training process would not pass the verification and she still has to

train it again to claim the reward.

5.3.3 Modeling of Prover’s Incentive

For a fixed prover and a fixed task, we can assume the computational cost to honestly

train an epoch is a deterministic constant m, and thus honestly training the task has a cost

(aka. “difficulty”) of M = m · E > 0, which can be dynamically adjusted by adjustment of

E. For each epoch, the prover may train it honestly or dishonestly (detailed discussion in

Section 5.6). When dishonestly training an epoch, the prover may pay a significantly lower

computational cost, and we assume it to be 0. We assume that dishonest training of one

epoch does not affect the computational cost of further epochs. Therefore, if we honestly

train a ρ portion of all epochs, the computational cost is (lower bounded by) ρM .

There can be competition among provers (or not, due to the allocation rule of the tasks)

and only the first prover who submits a certificate wins, so if a prover does more honest

computation and consumes more time before submission, her probability of winning the

competition does not increase. We define P : [0, 1] → (0, 1] as a non-increasing function

that characterizes the competition: if the prover computes ρ portion of the task (i.e. ρE

epochs) honestly, then she has a P (ρ) probability of winning, in which P (0) = 1. If there is
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no competition, we just let P (x) ≡ 1.

When the prover wins the competition and submits her certificate, if ρ < 1, i.e., the

prover does not act honestly, then there is a chance that she is caught. For any fixed ρ,

as the prover may have multiple strategies to choose the (1 − ρ) portion for cheating, we

denote Q(ρ) as the maximal probability among all such cheating strategies of passing the

verification, in which we assume Q(·) is monotonic non-decreasing and Q(1) = 1. If passing

the verification, the prover gets a reward of R at a computational cost of ρM , and the net

utility is R−ρM ; if getting caught cheating, she will be penalized for γR, and the net utility

is −(γR + ρM). For a good PoL mechanism, we expect a low γ, ideally zero, to lower the

staking requirement5 and improve the convenience of participation.

If the prover loses the competition, the sunk cost in training the model is still paid, but

she may find out that the task has been completed by another prover before she completes

the computation, so the cost can be less than ρM . Hence, we denote her expected utility

conditioned on losing as −µ(ρ) ∈ [−ρM, 0]. Assuming P (·) is a differentiable function, we

can compute that (details in Appendix C.1):

µ(ρ) =

∫ ρ

0
P (x)dx− ρP (ρ)
1− P (ρ)

M. (5.5)

In summary, the expected utility for the prover to honestly train a ρ portion of the task

is

u(ρ) = P (ρ)(Q(ρ) · (R− ρM)− (1−Q(ρ)) · (γR + ρM))− (1− P (ρ))µ(ρ)

= P (ρ)(Q(ρ)− γ(1−Q(ρ)))R−
∫ ρ

0

P (x)dx ·M.
(5.6)

To make the mechanism desirable for the prover and incentivize the prover to honestly

train all the E epochs, we expect to satisfy the following (strict) interim individual-rationality

(strictly interim IR) and basic incentive-security (BIS) properties:

5To ensure that the prover has enough tokens to pay the penalty, we have to require the prover to stake
γR before participation. We can see that setting γ → +∞ makes the problem trivial as the prover gets
an infinite penalty whenever she cheats; however, it needs the prover to stake an infinite amount of tokens,
which is not possible.
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Definition 17 (Strict interim individual-rationality). We call a PoL mechanism strictly

interim individually-rational (strictly interim IR) if and only if honestly training the task

earns a positive expected utility, i.e.,

u(1) > 0, (5.7)

assuming the verifier is honest.

Definition 18 (Strict interim basic incentive-security). We call a PoL mechanism strictly

interim basic incentive-secure (strictly interim BIS) if and only if honestly training the task

earns strictly more expected utility than dishonest training, i.e.,

∀ρ ∈ [0, 1), u(ρ) < u(1), (5.8)

assuming the verifier is honest.

In the rest of this paper, without confusion, we omit the words “strict” and “interim”,

and call a mechanism γ-IR-BIS if it satisfies both of the properties above for parameter γ.

5.3.4 Threat Model

Jia et al. [96] introduce a threat model that consists of 4 types of attacks, as follows:

1. Retraining-based spoofing: the attacker aims to get the same PoL of the same model.

2. Stochastic spoofing: the attacker aims to get a different PoL of the same model.

3. Structurally correct spoofing: the attacker aims to get an invalid PoL of the same

model that passes verification.

4. Distillation-based spoofing: the attacker aims to get a PoL of a (slightly) different

model.

While our mechanism has some structural similarity to [96], our work has a different

motivation. The work of Jia et al. [96] mainly aims to protect the copyright of an already

trained model, but in our work the PoL serves as a Proof-of-Useful-Work, and our mechanism
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mainly aims to verify that the prover (as a miner) honestly did the computation, in which

the attacker may have the interest to steal the copyright or not (if yes, we can just add the

benefit of the copyright into the reward R in our analysis, so we essentially consider a wider

attack space.) Nevertheless, as PoW miners typically compete for the blocks to earn block

rewards, so we are motivated to mainly consider rational miners who would cheat to gain

more economic utility.

In the paper of Jia et al. [96], the authors assume the attacker has the full information

of the desired model, the full dataset, but does not have information of the random source

of the model. In our paper, as the random seed is specified by the protocol, we consider an

even stronger adversary that also has the random source. Formally, we assume that:

• The attacker has full information of the desired model f(W, ·) trained with seed ϕ,

but does not know the training process (for model-stealing attacks); she has also pre-

trained a valid model f(W ′, ·) with a different seed ϕ′ (for known-model attacks).

• The attacker has full information on the dataset.

• The attacker also has the random source of the desired model, i.e. the random seed ϕ

and the randomization guideline G .

With our rational attacker assumption, the attack space contains a slightly modified

version of 4 types of attacks. Actually, it is stronger because the structurally correct spoofing

no longer requires to get the same model.

1. Retraining-based spoofing: the attacker aims to get the same PoL of the desired model

f(W, ·).

2. Stochastic spoofing: the attacker aims to get a different but valid PoL of the desired

model f(W, ·).

3. Structurally correct spoofing: the attacker aims to get an invalid PoL of any (correct

or incorrect) model f(W#, ·) that passes verification.

4. Distillation-based spoofing: the attacker aims to get a valid PoL of a (slightly) different

model f(W ′′, ·).
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In Section 5.6 we will show the incentive-security property of our basic and full mechanisms

against such attacks.

5.4 Basic Mechanism for Trusted Verifiers

In this section, we provide a general overview of our basic protocol for provers and verifiers,

under the assumption of trusted verifiers which is widely adopted in previous literature.

5.4.1 Generation of PoL Certificate

The protocol is shown in Algorithm 2. For each block, we assume that there is an assigned

problem A = (Dtr,E , ϕ), in which Dtr is the training dataset, E is the environmental

variables which include learning rate η, loss function L , batch size m, number of epochs

E, randomization guideline G that dictates how the randomness is generated from the seed,

and other required specifications if needed (e.g. the initialization), and ϕ is the random seed

generated from past blocks.

The prover is expected to solve the problem A by training E epochs following the given

rule directed by E , with the random seed ϕ. The initialization w0 is specified by E , and the

prover is required to record the status after every k epochs, in which k is an integer parameter

(either specified in the blockchain rule or specified in G ): smaller k leads to larger certificate

size and prover storage consumption but lower computational overhead (see Section 5.6).

We assume that E is divisible by k, then the training process can consist of T = E
k

stages,

in which each stage consists of τ = k · l steps. For each stage t ∈ [T ], the prover is required

to save the current weight Wt = wt·τ . To save on-chain space, we only need the prover to

a hash value of each Wt, and the required certificate is structured as c = (c1, · · · , cT ) in

which ct = hash(Wt); In the verification stage, she also needs to post a subset of {Wt} when

queried by the verifier (see section 5.4.2).

Denote |W | as the model size, then the communication complexity is O(E
k
) and the storage

requirement for the prover is O(E|W |
k

) on this part.
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Algorithm 2 Prover’s certificate generation protocol in the basic mechanism
1: Input A = (Dtr,E , ϕ), k, α,L , f .
2: Initialize w = w0 according to E .
3: T := E

k
.

4: e := 0
5: for t := 1 · · ·T do
6: for x := 1 · · · k do
7: e := e+ 1
8: Draw be according to (G , ϕ)
9: w(e) := Tη(be, w(e−1))

10: Wt := w(e)

11: ct := hash(Wt)

12: Post c := (c1, · · · , cT ).

5.4.2 Verification

The verification protocol is shown in Algorithm 3. The verifier is expected to randomly6

verify α stages tve = {t1, · · · , tα} among T , in which α is a security parameter. For

unpredictability to the prover, these stages should be drawn via uniform random sampling

without replacement from her own secret (independent from ϕ). Then the verifier posts tve,

requiring the prover to show corresponding weights.

Then, for each ti, the prover is expected to post the weights before and after the stage, i.e.

Wti−1 and Wti . The verifier then checks whether the previously posted hashes are correct,

and re-train the stage from Wti−1 to see if the result is Wti . If and only if all tests are passed,

then the basic verification is successful; otherwise, the verifier reports the detected cheating

stages and indicates that the verification has failed.

In this part, the communication complexity is O(α|W |) and the relative computational

overhead is O(αk
E
). In total, the communication complexity is O(E + α|W |).

5.5 Full Mechanism for Untrusted Verifiers

In this section, we discuss the verifier’s incentive and augment our design to incentivize the

verifier to verify honestly. On a high level, we introduce safe deviations as “flags” that do
6In this chapter, whenever we use the term “randomly”, we refer to “randomly with a uniform

distribution”.
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Algorithm 3 Verifier’s verification protocol in the basic mechanism
1: Input A = (Dtr,E , ϕ), k,L , f, c = (c1, · · · , cT ).
2: Draw tve = {t1, · · · , tα} from {1, · · · , T} via her own secret.
3: Post tve to the prover, expecting to get {(Wti−1,Wti)} for each ti ∈ tve.
4: for i ∈ 1 · · ·α do
5: if cti−1 ̸= hash(Wti−1) ∨ cti ̸= hash(Wti) then
6: Return (“Fail”, InvalidWeights(ti))
7: w = Wti−1

8: for e := k · (ti − 1) + 1, · · · , k · ti do
9: Draw be according to (G , ϕ)

10: w := Tη(be, w)

11: if w ̸= Wti then
12: Return (“Fail”, ErrorInStage(ti))
13: Return “Success”

not affect the validity of the PoL but gain the verifier additional rewards that compensate

for the verification cost, and design economic incentives to incentivize the verifier to find as

many flags as possible within the α stages they inquire for their optimal utility, so that they

would indeed verify α stages as supposed to.

5.5.1 Verifier’s Strategy Space

In the previous works on Proof-of-Learning, it is typical that the systems only prevent

the provers from cheating while assuming that verifiers are honest. However, in a fully

decentralized and permissionless blockchain system, this is not necessarily true. While one

may straightforwardly consider game-theoretic ways to incentivize verifiers to verify honestly,

the Verifier’s Dilemma [133, 134] would occur:

Verifier’s Dilemma

• If a PoUW mechanism is (incentive-)secure against strategic provers, then no

(rational) prover would cheat.

• If no prover would cheat and the verification has a non-zero computational cost,

then the verifier’s optimal strategy is to report “Success” without verification.
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• If all verifiers are rational and would not actually verify, then the security properties

no longer hold.

The Verifier’s Dilemma indicates the difficulty in the design of a truthful mechanism with

a Nash equilibrium7 that both the prover and verifier act honestly.

Formally, we can model the verification game as follows:

Definition 19 (Verification Game). In a verification game, there is one prover P and nv ≥ 1

verifier(s) V1, · · · , Vnv . The prover has an action space Ap, and a subset AH
p ⊆ Ap is denoted

as honest. We denote AD
p = Ap\AH

p as the set of the prover’s dishonest actions. For each

action ap ∈ Ap, the prover is incurred an initial cost cp(ap).

We assume nv verifiers are independent and homogeneous. Any verifier also has an action

space Av with subsets AH
v and AD

v defined similarly. For any action av ∈ Av, the verifier

pays a cost of cv(av, ap) and observes a result “Success” or “Fail”, possibly attached with

additional information in I . Here, we denote Pv(av, ap) as the probability that the result is

“Success”.

In this work, we assume that the honest verification process may fail to detect cheats, but

always passes honest proofs, i.e.,

ap ∈ AH
p ∧ av ∈ AH

v ⇒ Pv(av, ap) = 1.

Finally, the prover and verifiers are rewarded or punished based on the verifiers’ reports

and the prover’s action, given that the prover may dispute and future users may check the

verification result and do slashing for dishonest verification. Hence, the payment rule can be

denoted as:

π : ({“Success”, “Fail”} ×I )nv × Ap → Rnv+1.

For the slashing rule, since the honest verification always passes honest proofs, we assume

that reporting “Fail” when ap ∈ AH
p can be regarded as deliberately malicious and will

7A Nash equilibrium refers to a situation in multi-party games in which no single party can benefit from
individual deviation.
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incur heavy penalties (→∞) for the verifier.

From the modeling, we can show a formal negative result as:

Theorem 5.1 (Verifier’s Dilemma). In a verification game in which the only information

the verifier(s) report is “Success” or “Fail”, i.e. |I | = 1, and honest verification has a

strictly positive cost, i.e.

av ∈ AH
v ⇒ cv(av, ap) > 0,

it is impossible to design a verification mechanism with a pure-strategy Nash equilibrium that

the prover and verifier(s) simultaneously act honestly.

The proof is deferred to Appendix C.5.1.

To analyze the concern in the scope of our work, in the context of this paper, we classify

the verifier’s strategies into 3 types:

• Honest: Run the verification protocol honestly.

• Lazy: Verify a different (possibly stochastic) α′ ≤ α of stages from designated, with

Pr[α′ < α] > 0.

• Non-trivially Dishonest: Run any algorithm non-equivalent to Honest or Lazy.

We notice that any Honest or Lazy verification strategy essentially verifies a subset of

the stages so that no honest proof would fail the verification. On the other hand, from our

protocol in Section 5.4.2, when a verifier reports “Fail” she must indicate the stage that

fails the verification; hence, if the prover is actually honest, she can clarify its honesty and

thus the verifier can be easily caught and heavily penalized by a “slashing” mechanism like

in Ethereum. Therefore, we mainly consider the “benign” verification strategies, formally

defined as follows:

Definition 20 (Benign verification strategy). A verification strategy is benign if and only

if honest proofs pass the verification with probability 1.

In the rest of this section, we only consider benign verification strategies for the verifier.
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5.5.2 The Symmetric-Cheating Model and Failure of Basic Mechanism

While a dishonest prover may prefer certain stages over others for cheating in the real world,

since every stage has the same computational cost and our verifier’s protocol in Section 5.4.2

guarantees that the probability of getting caught only depends on the number of cheating

stages, we can argue that a dishonest prover would be indifferent on the stages to cheat.

Therefore, we consider a symmetric-cheating model in which a dishonest prover acts in the

following way:

Definition 21 (Symmetric-cheating prover). A symmetric-cheating prover has a type p =

(p0, p1, · · · , pT ) in which pi is the probability that she cheats in i stages, and
∑

i pi = 1.

When she is generating a PoL, she performs as follows:

1. Nature chooses m ∼ p as the number of stages she would cheat.

2. She uniformly randomly draws m stages among the total T stages to cheat and compute

the PoL in this way.

3. She submits the PoL.

Now we assume that the prover is symmetric-cheating. Since we have shown the basic

(prover-side) incentive-security of our mechanism, among the population of parties that may

serve as provers, we assume that an overwhelming majority are honest, and only a small

fraction ϵ may cheat. Define p̄ = (p̄0, · · · , p̄T ) as the mean of p in the population of provers,

then we have

p̄0 ∈ (1− ϵ, 1). (5.9)

Failure of the basic mechanism. While we may straightforwardly want to reward the

verifier for catching cheats, unfortunately from the Verifier’s Dilemma, as long as the reward

for the verifier is bounded, we can see that our basic mechanism in Section 5.4.1-5.4.2 would

not work. Formally, we have

Theorem 5.2. In our basic mechanism in Section 5.4.1-5.4.2, if we assume that the verifier’s

maximum reward for finding a cheat is v+ and the verifier’s expected reward when the PoL
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passes the verification is v0, then if v+ ≤ v0 or ϵ ∈ (0, M
T (v+−v0)

), the verifier’s strictly optimal

strategy is to report “Success” without verification.

The proof of Theorem 5.2 is deferred to Appendix C.5.2. Therefore, for any fixed v+, v0,

we always have ϵ > 0 which makes the mechanism not incentive-secure for the verifier,

because for ϵ small enough, the expected “additional reward” for catching a cheat would not

cover the cost of verification. Therefore, we desire to modify the basic mechanism in a way

that the verifier would maximize her expected utility by verifying and reporting honestly,

uniformly for any ϵ small enough.

In this setting, we define verifier incentive-security (VIS) as follows:

Definition 22 (Verifier incentive-security). We call a PoL mechanism verifier incentive-

secure if and only if, for some fixed ϵ > 0, as long as the prover is honest with a probability

greater than 1 − ϵ, the verifier gets the most expected utility via honestly performing the

verification protocol among all benign verification strategies.

Particularly, the mechanism discussed in this section is VIS if and only if the verifier is

incentivized to honestly verify all α stages in tve honestly.

5.5.3 The Capture-The-Flag Protocol

As discussed in the parts above, we are aware that the Verifier’s Dilemma only occurs in

the scenario of ϵ → 0. Hence, a natural idea is to increase ϵ, i.e. insert deliberate invalid

objects, or so-called “flags” to incentivize verifiers to find, as in the works of [135, 136, 137].

On the other hand, our Theorem 5.1 also shows the necessity for a desirable verification

mechanism to let the verifier incorporate additional information into her report. Hence, the

most straightforward idea is to deliberately generate invalid PoL’s into the pool that serve

as flags. However, this approach also faces the following challenges:

• The cheaters in the pool can have complicated behavior, e.g., having different ρ’s in

their cheating patterns. It is difficult to set proper ρ’s or analyze verifiers’ behavior in

the presence of both cheats and deliberately inserted flags.
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• Particularly, if ρ is not close to 0, then the generation of invalid PoL’s needs to contain

a large portion of honest computation which has immense computational overhead,

which not only undermines the efficiency but also complicates the protocol, e.g., in the

allocation and compensation of such “chores”.

• If ρ is close to 0, then the verifier would have a high probability of identifying the flags

even if they only verify 1 stage (rather than α), which could incentivize a different

dishonest strategy rather than the honest one.

In consideration of the issues above, we propose a variant to (let provers) insert the flags

into each PoL certificate, i.e. designate a random subset of the stages as flags, and provers

should make commitments about the flags inserted when submitting the PoL. However, due

to the sequential nature of the SGD algorithm, inserting an invalid stage may affect the

validity of the following stages and ultimately the resulting model; therefore, we insert safe

deviations that serve as flags, which is implemented by computing honestly with a differently

designated seed. In particular, given the (root) random seed ϕ, a stage t can have 4 possible

types:

1. Normal: it is trained with random seed rϕ(3t), as defined in Section 5.3.2.

2. Flag F1: it is trained with random seed rϕ(3t+ 1).

3. Flag F2: it is trained with random seed rϕ(3t+ 2).

4. Dishonest: otherwise.

Notice that we do need two types of flags so that the verifier would be willing to check the

type of the flag, instead of reporting “Flag” when the verification of “Normal” fails without

any attempt to differentiate it from a dishonest stage. In this setting, we assume that less

than half of the stages are flagged, so that the verifier would first verify with seed rϕ(3t) for

stage t. If the verification of seed rϕ(3t) fails, the verifier, who believes that the probability

of cheating is sufficiently small, would believe that it is a flag and randomly choose one of

the following actions:
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• Verify with seed rϕ(3t+ 1). If successful report F1, otherwise report F2.8

• Verify with seed rϕ(3t+ 2). If successful report F2, otherwise report F1.

The verifier can alternatively randomly guess F1 or F2 without verification of either, but

this would lead to a 1
2

probability of reporting the wrong flag and getting penalized (for

a higher amount than the flag reward). Hence, the verifier is incentivized to perform the

verification as described above.

Therefore, if a cheater wants to disguise a dishonest stage as a flag, she must claim that

it is F1 or F2 in the commitment, with a κ = 1/2 probability of being caught if the stage is

verified.

The protocol of certificate generation and verification are shown in Algorithm 4 and

Algorithm 5, respectively.

Algorithm 4 Prover’s certificate generation protocol in the full mechanism
1: Input A = (Dtr,E , ϕ), k, α,L , f, η.
2: Initialize w = w0 according to E .
3: T := E

k

4: e := 0
5: Generate σ = (σ1, · · · , σT ) as a random permutation of [T ] from her own secret.
6: H := hash(σ)
7: for t := 1 · · ·T do
8: if σt ≤ ηT then
9: if σt is odd then st := rϕ(3t+ 1) else st := rϕ(3t+ 2)

10: else
11: st := rϕ(3t)

12: for x := 1 · · · k do
13: e := e+ 1
14: Draw be according to (G , st), denoted as be := Be(st).
15: w(e) := Tη(be, w(e−1))

16: Wt := w(e)

17: ct := hash(Wt)

18: c := (c1, · · · , cT )
19: Post (c,H ).

8Since the stage is neither normal or F1, it is either F2 or dishonest. As the probability of cheating
is sufficiently small, she would prefer to believe it is F2 rather than take additional computational cost to
distinguish them via verifying with seed rϕ(3t+ 2). Similar for the other case.
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Intuitively, to incentivize the verifier to verify α stages among the total T , assume that

we would like the prover to insert ηT (committed) flags in which η ∈ [2α
T
, 1
2
), then when

the verifier verifies honestly, the expected number of flags she finds would be αη. Since the

verifier only has access to the α stages in tve, we would like to incentivize the verifier to

find as many flags as possible so that the verifier would honestly verify all the α stages.

Therefore, we award the verifier for each flag she detected. Particularly, recalling that the

training cost of a stage is M
T

and noting that the discovery of a flag would take an additional
M
T

cost of computation, we set positive parameters R0 ≫ R1 >
M
T
( 2
η
+1). When the verifier

finds u flags and D dishonest stages, the system gives the verifier a reward of Wv(u):

Wv(u) = R0[D > 0] + R1u. (5.10)

in which the notation [statement] stands for

[statement] =

1, if statement is true;

0, otherwise.

In Section 5.6, we prove that for values of α, β, T that satisfy certain conditions, there is

a Nash equilibrium that the prover trains honestly, and the verifier verifies exactly α stages.

5.6 Theoretical Incentive-Security Analysis

In this section, we show the incentive-security properties of our mechanisms.

In Section 5.3.4, we model 4 types of attacks to the PoL mechanism. In the protocol defined

in Section 5.4.1, the training task is divided into T stages. Even though it is a stochastic

gradient descent task, since the random seeds are given by the protocol, the training process

of each stage is deterministic.

In the prover’s training process, the prover is expected to save the model weights Wt at

each stage t, and post ct = hash(Wt). An honest prover should compute each Wt from the

result Wt−1 of the previous stage following the expected procedure.
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For a possibly dishonest prover, in each stage t, she may compute Wt from Wt−1 either

honestly or dishonestly, or even does not compute a Wt at all while forging a fake ct. In our

definition, even if Wt−1 may be dishonestly computed, as long as she follows the procedure

and computes Wt from Wt−1, we say that she trains stage t “honestly”; otherwise, if either

Wt−1 or Wt is nonexistent or invalid, or the prover does not follow the procedure when

computing Wt from Wt−1, we say that she trains the stage t “dishonestly”. Hence, we can

naturally define the ρ (as discussed in Section 5.3.3) as the fraction of stages trained honestly

and say that the prover is honest if and only if ρ = 1, i.e., she trains all stages honestly.

As introduced in Section 5.4.2, the verifier randomly chooses α stages among the T stages

to verify. For each chosen stage t, the verifier queries the prover for (Wt−1,Wt) and verifies

if Wt−1, Wt match the hashes and Wt is the result of honest computation from Wt−1. Since

the prover needs to post hashes of weights before the verification, all the weights have

to be finalized before the verification. Hence, the prover would pass the verification with a

probability of 1 if and only if all verified stages are trained honestly. In the full mechanism, if

ξ verified stages are not trained honestly, the prover passes the verification with a probability

of 2−ξ.

In Section 5.3.4 we discussed about 4 types of attacks. In retraining-based spoofing, the

attacker aims to get the same PoL, while in the other 3 types of attacks, the attacker aims to

get a different PoL. Due to the deterministic nature of our protocol, if the attacker aims to

get a different PoL, she must train a subset of stages dishonestly, which is indeed classified as

“dishonest” in our analysis9; for the retraining-based spoofing, since the attacker aims to get

the same PoL, it can neither save any computational cost nor corrupt the model, so it only

has interest in copyright protection and does not need to be considered for the motivation

of out setting that aims to adopt PoL as a PoUW.

For prevention of the 3 types of attacks, under mild assumptions, we show that our

mechanism is incentive-secure for small α compared to the number T of stages and a

moderately large R1, as characterized as below:

• Even with no penalty (γ = 0), an α = O(logT ) is sufficient as long as the reward R

9In the augmentation of Section 5.5 there may exist different valid safe deviations but they could not
save any computational cost.
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guarantees “just slightly more than” individual-rationality.

• With moderate penalty γ = Θ(1), an α = O(1/γ) = O(1) and a reward R guaranteeing

IR are sufficient to guarantee γ-IR-BIS.

• With η ∈
[
2α
T
, 1
2

)
and R1 ≥ M

T

(
2
η
+ 1
)

, our full mechanism is guaranteed to be VIS.

Formally, we have our main theorem on the prover side:

Theorem 5.3 (Main Theorem). Assume T ≥ 2, and denote β = M
R

. If the winning

probability function P (·) is differentiable and its hazard rate is upper bounded by λ, i.e.,

P ′(ρ)

P (ρ)
∈ [−λ, 0], ∀ρ ∈ [0, 1], (5.11)

in which P ′(·) is denoted as the derivative of P (·); and in the verification protocol defined,

a cheating stage has at least a κ = Θ(1) probability to be caught when verified10, then the

mechanisms defined as Algorithms 2-3 and Algorithms 4-5 are 0-IR-BIS if

R >

∫ 1

0
P (ρ)dρ ·M

P (1)− (1− κ)α
, (5.12)

α ≥ max
{
2(λ+ β)

βκ
,
2 ln T

β

κ

}
, (5.13)

in which Eq. (5.12) exponentially converges to R >
∫ 1
0 P (ρ)dρ·M

P (1)
, the sufficient and necessary

condition for IR, when α is moderately large.

The proof is deferred to Appendix C.5.3. From the main theorem, we see that for a fixed

P , the number of required stages for verification is O(logT ) for bounded λ and κ = Θ(1),

making the relative computational overhead as low as O( logT
T

) = O(k logE
E

).

Furthermore, by inducing penalty γ = Θ(1), i.e. getting caught cheating leads to a penalty

comparable to the block reward, we can lower the number of required stages to O(1) and

the relative computational overhead to O( k
E
). Formally, we have:

10In the basic mechanism we have κ = 1, while in the full mechanism κ ≥ 1
2 .
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Theorem 5.4. For γ > 0, with the same definition of β, λ, κ as in Theorem 5.3, the

mechanisms defined as Algorithms 2-3 and Algorithms 4-5 are γ-IR-BIS if

R >

∫ 1

0
P (ρ)dρ ·M
P (1)

, (5.14)

α > max
{
β

γκ
,
λ

κ

}
. (5.15)

The proof of Theorem 5.4 is deferred to Appendix C.5.4.

On the other hand, we show the verifier incentive-security property of our mechanism,

which, combined with the basic incentive-security properties of our mechanism, guarantees

a Nash equilibrium that both parties behave honestly:

Theorem 5.5. Our full mechanism defined as Algorithms 4-5 is VIS if

η ∈
[
2α

T
,
1

2

)
, (5.16)

R1 ≥
M

T

(
2

η
+ 1

)
. (5.17)

The proof of Theorem 5.5 is deferred to Appendix C.5.5.

5.7 Experimental Demonstration

In this section, we perform experiments to evaluate the practical performance on our

proposed PoL mechanism. In our experiments, we test our mechanism with the CIFAR

(CNN) and MNIST (MLP) training tasks on a computer with NVIDIA GeForce RTX 4090

and 24GB memory. Each task contains T = E = 1000 stages with each stage containing

one epoch, and for robustness of the system, each task is independently verified by n = 5

verifiers. We set parameters η = 0.2 (20% stages flagged), γ = 0 (no penalty), β = 1
2

(the

reward is 2 times the computational cost), and α ∈ {1, 2, 5, 8, 10, 50} as the number of stages

each verifier checks. In case of disagreement among verifiers, we employ the following reward

rules:
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Provers’ rewards. To decide on the acceptance or rejection of a proof, we follow the vote

of majority verifiers, i.e., the proof is accepted if and only if v > n
2

verifiers vote “Success”.

Then the prover’s reward can be proceeded with one of the following rules:

1. Proportional Rule: The prover gets a v
n

fraction of the training reward, i.e., v
n
R,

regardless of the decision.

2. Strict-Proportional Rule: The prover gets v
n
R when accepted, and 0 when rejected.

Even if the proof is accepted, we do not pay full rewards when v < n to ensure that

even “slight” cheats are not (marginally) profitable. We can see that the Proportional Rule

has the same prover incentive properties as the setting of one single verifier, and we defer

detailed discussions to Appendix C.2.

Verifiers’ rewards. While the design of more theoretically guaranteed reward rules to

incentivize honest reports without reference to ground-truth information generally lies in the

scope of peer prediction (e.g., [5, 138, 139, 140]), in this study we mainly focus on the design

of PoL protocols and leave it to future work. Here, we reward the verifiers based on majority

voting, and only verifiers whose reports agree with the majority get rewards as follows.

• If the proof is accepted, verifiers reporting “Success” are rewarded according to

detected flags according to Section 5.5.3.

• If the proof is rejected, verifiers reporting “Fail” are given a constant reward as the

expected verification reward if the proof were honest and accepted, i.e., αηR1.

5.7.1 Experimental Results

In the experiments, we perform the following groups of tests with different types of attacks

as shown in Table 5.2. Among these attacks, only the partial spoofing attack shows non-zero

success rates, as other attacks invalidate the output of every stage and will be detected even

if only one stage is checked. We notice that the attacks of [100, 101] essentially modify the

training process to exploit the error tolerance in the work of Jia et al. [96] and lie in the scope

of distillation-based spoofing attack, and hence are effectively prevented by our mechanism.

104



Table 5.2: Types of attacks in the experiments.

# Attack Type Success Rate
0 Honest: No cheating or attack. 1
1 Known-model Attack: The attacker submits a pretrained

model obtained from external sources.
0

2 Model-stealing Attack: The attacker submits a model
trained by others who received the same training task.

0

3 Stochastic Spoofing Attack: The attacker randomly
generates formatmatched results as the certificate.

0

4 Structurally Correct Spoofing Attack: The attacker mimicks
the format of a PoL, randomly updating the model’s weight
without doing the actual training.

0

5 Distillation-based Spoofing Attack: The attacker modifies
some parameters or the training process. Attacks of [100,
101] lie in this scope.

0

6 Partial Spoofing Attack: The attacker trains partial of the
stages honestly and partial dishonestly.

Depending on
parameters.

Provers’ rewards. In Figures 5.1, we show the experimental results for training CIFAR

and MNIST datasets with different α, in which the Proportional Rule is used for prover’s

rewards and the reward ratio refers to the expected reward from the system compared to

honest training. From the plots we show that the system can detect almost all partial spoofs

with α = 50, i.e. each verifier verifies 5% of all stages. For smaller α, the expected reward

of a spoof increases with higher honesty ratios and decreases with larger α’s.

Figure 5.1: Experimental Results.
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Figure 5.2: Prover Net Utilities.

Furthermore, in Figure 5.2 we show the incentive properties of our mechanism for the tasks.

The “Utility Ratio” refers to the net utility (reward minus computational cost) compared

honest training. From the results, we see that when there is no mining competition, training

the model honestly yields the maximum utility for the prover even for α = 1, i.e., the

mechanism is incentive-secure. Furthermore, we see that for α ≥ 10, the prover gets negative

utility unless at least 90% of the stages are honestly trained, showing the sharpness of our

incentive guarantee even for small α’s.

Since the experimental evaluation in the scenario with mining competition is complicated

with real ML training tasks, particularly for the estimation of sunk costs when losing the

competition, we refer to Theorems 5.3-5.5 for theoretical guarantees and leave real-world

experiment for future empirical study.

Verifiers’ rewards. In the notion of Nash equilibria, we assume the honesty of the

prover and all other verifiers. When we consider the case of α = 50 in which there is

an overwhelming probability that all other verifiers report the ground truth (as shown in

previous experiments), the proof is accepted and the verifier’s reward and utility are simply

proportional to the honestly verified stages. Hence, the verifier is indeed incentivized to

honestly verify all α stages. In Appendix C.3 we show the detailed experimental results and

also demonstrate the necessity of the CTF protocol for the assurance of verifiers’ incentive

guarantees empirically.
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Table 5.3: Computational Overhead Analysis. (α = 50)

Honest Ratio Training (s) Verification (s) Overhead/Verifier (%)
0.0 169.5 282.3 166.5
0.1 500.5 274.5 54.8
0.2 775.5 264.4 34.1
0.3 984.0 253.1 25.7
0.4 1235.5 243.5 19.7
0.5 1521.0 228.6 15.0
0.6 1717.5 222.3 12.9
0.7 2027.5 213.0 10.5
0.8 2356.5 199.5 8.5
0.9 2642.5 185.8 7.0
1.0 2782.0 171.0 6.1

Table 5.4: Communication Overhead Analysis.

MNIST CIFAR
Model Size (MB) 52.41 162.60

Data Generated in Training (MB) 2369 3595
Transmission/Verifier (MB), α = 10 147 382

Overhead/Verifier (%), α = 10 6.2 10.6
Transmission/Verifier (MB), α = 50 333 658

Overhead/Verifier (%), α = 50 14.0 18.3

Computational overheads. In Table 5.3, we show the average running time for training

and verification, in which α = 50 epochs are verified among a total of E = T = 1000. We can

see that for each verifier, verifying an honest proof takes 6.1% of the training time, slightly

higher than α
T
= 5.0% as the flag test in Algorithm 5 takes additional computation. Since we

expect that most of the proofs are honest, our mechanism indeed achieves low computational

overheads.

Communication overheads. The communication overheads are shown in Table 5.4. We

can see that the communication overheads are worse than computational overheads because

full parameters need to be transmitted for verification, but still within a reasonably small

fraction (< 20%) of all data generated during the training process. To further optimize

the communication overheads, low-rank training techniques (e.g., GaLore [141, 142]) can be

adopted to optimize the overall I/O overheads for the training tasks.
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5.8 Discussion

In this chapter, we develop an incentive-secure PoL mechanism with provable incentive-

security, efficiency and controllable difficulty that successfully bypasses the existing hardness

results, and also tackles the Verifier’s Dilemma via a capture-the-flag protocol that

encourages honest verification, while improving the relative computational overhead from

Θ(1) in [96] to O( logE
E

) or O( 1
E
), and improving the communication complexity from

Θ(E|W |) in [96] to O(E + |W | logE) or O(E + |W |), depending on different settings. On a

high level, this paper not only provides an approach toward a secure and sustainable PoUW

puzzle, but also has the potential to be a novel design for decentralized AI platforms.

While our mechanism can significantly improve the communication complexity compared

to privious work, if the communication is implemented on-chain, it is only applicable for

relatively small models. To enable models with larger sizes compared to block spaces, IPFS

[143] or layer-2 techniques [144] can be used for cheaper storage.

In real-world applications where the trained model may have exogenous interests, the

prover may gain additional utility from training an incorrect model. In this scenario, our

mechanism can be augmented with a family of anomaly detection techniques for deep learning

[145] and ensure that corrupting a small number of epochs would not significantly corrupt

the output model. We defer high-level discussions to Appendix C.4 and leave the detailed

study for future research.
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Algorithm 5 Verifier’s verification protocol in the full mechanism
1: Input A = (Dtr,E , ϕ), k,L , f, c = (c1, · · · , cT ),H .
2: Draw tve = {t1, · · · , tα} from {1, · · · , T} via her own secret.
3: Post tve to the prover, expecting to get {(Wti−1,Wti)} for each ti ∈ tve.
4: for i ∈ 1 · · ·α do
5: if cti−1 ̸= hash(Wti−1) ∨ cti ̸= hash(Wti) then
6: Return (“Fail”, InvalidWeights(ti) )
7: w = Wti−1

8: w1 = w
9: for e := k · (ti − 1) + 1, · · · , k · ti do

10: b
(0)
e = Be(rϕ(3t))

11: b
(1)
e = Be(rϕ(3t+ 1))

12: b
(2)
e = Be(rϕ(3t+ 2))

13: w1 := Tη(b
(0)
e , w1)

14: if w1 = Wti then
15: Vi := 0
16: else
17: Draw ξ ∼ Uniform{0, 1}
18: if ξ = 1 then
19: for e := k · (ti − 1) + 1, · · · , k · ti do
20: w := Tη(b

(1)
e , w)

21: if w = Wti then Vi := 1 else Vi := 2
22: else
23: for e := k · (ti − 1) + 1, · · · , k · ti do
24: w := Tη(b

(2)
e , w)

25: if w = Wti then Vi := 2 else Vi := 1

26: Post V = {Vi}i∈[α], requesting the prover to post σ.
27: if hash(σ) ̸= H then
28: Return (“Fail”, InvalidFlagCommitment)
29: for i ∈ 1 · · ·α do
30: if σti ≤ ηT then
31: if σti is odd then si := 1 else si := 2
32: else
33: si := 0

34: if Vi ̸= si then
35: Return(“Fail”, ErrorInStage(ti) )
36: Return (“Success”, tve, {si}).
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CHAPTER 6

INCENTIVES FOR DECENTRALIZED
VERIFICATION GAMES

Peindre l’amour, peindre la vie,

Pleurer en couleur.

— Clair Obscur: Expedition 33

6.1 Introduction

Blockchain, with prevailing examples as Bitcoin [78] and Ethereum [79], is an emerging

technology that maintains decentralized consensus via a distributed ledger that utilizes

cryptographic techniques to achieve trust and security. In recent years, the blockchain

technology is drawing wide interest in the operations research community (see, Chen et al.

[3], Davydiuk et al. [30], Iyengar et al. [31], Manzoor et al. [32], Whitaker and Kräussl

[33], Gong et al. [146] and their references); on the other hand, it also has applications that

empower traditional operations research studies, e.g., supply chain management (Keskin

et al. [34], Cole et al. [147], Cui et al. [148]). Furthermore, following the current trend

of artificial intelligence (AI), a frontier topic of decentralized AI [149] occurs with the

motivation to leverage blockchain technologies for securing training and inference procedures

of machine learning (ML) computation to ensure credibility and accountability of AI models,

and has been drawing interest in both blockchain and AI communities (see, e.g., Zhao et al.

[4], Conway et al. [130], Chen et al. [150]).

In the meantime, from a game-theoretic perspective, a well-designed incentive mechanism

is crucial to motivate self-interested players to behave honestly in a decentralized ecosystem,

and a line of recent studies (see, Chen et al. [3], Roughgarden [37], Hansjoerg and Pierre-

Olivier [151], Chen and Golab [152], etc.) has formed an emerging research field of blockchain
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Figure 6.1: Illustration of decentralized verification games.

mechanism design that investigates the design and analysis of on-chain reward/penalty1

mechanisms to incentivize honest behavior on blockchain platforms, including decentralized

AI applications.

For concrete understanding of blockchain incentive mechanisms, let us look into how

decentralized consensus is maintained. In a blockchain system, the “chain” is essentially a

linked list of “blocks” growing with time, where each block stores a piece of data (aka.

transactions). Every player stores a copy of the chain, and players who propose new

blocks are supposed to simultaneously validate previous blocks. To achieve consensus

in such decentralized systems, Bitcoin adopts the Proof-of-Work (PoW) that requires

“miners” to expend significant computational effort (and energy) to earn access to blocks.

Alternatively, Ethereum uses Proof-of-Stake (PoS) that requires validators to stake tokens

for participation, and selects validators with probabilities in proportion to their staked tokens

[153]. Furthermore, recent studies also propose Proof-of-Learning (PoL) to replace the PoW

task with AI model training [4, 96]. On the one hand, the PoL protocol serves as a Proof-of-

Useful-Work (PoUW) that addresses the energy and sustainability issues of traditional PoW

protocols [84, 85] and the security and centralization issues of PoS [90]; on the other hand,

the verification of PoL in turn serves as the certificate that the model is trained honestly,

realizing the motivation of decentralized AI to prevent adversarial attacks on model training

[109] and address AI safety concerns [102] in the current times.

While such mechanisms are motivated to incentivize the prover to behave honestly,
1In the rest of this paper, we use terms “reward” and “penalty” interchangeably: a penalty can be

regarded as a negative reward and vice versa.
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they can inadvertently introduce strategic concerns for validators, e.g., rational validators

may act lazily or maliciously in the validation process. A notable phenomenon is

the Verifier’s Dilemma [133, 137, 154], showing that rational verifiers do not have the

incentive to act honestly when a proposed block (or “proof”) is honest with overwhelming

probability and verification incurs nontrivial computational costs. While the Verifier’s

Dilemma does not appear to seriously undermine the security of Bitcoin or Ethereum

in practice, it would become a prominent challenge in decentralized AI applications due

to the heavy computational costs of ML verification [4, 130]. The Verifier’s Dilemma is

described as follows: If a mechanism could incentivize provers to behave honestly, then no

(rational) provers would cheat; if no prover would cheat and the verification has a non-zero

computational cost, then the verifier’s optimal strategy is to lazily accept the proof without

actual verification; when verifiers become lazy, the incentive guarantees for provers no longer

hold. Formally, the Verifier’s Dilemma can be formulated as the following theorem. The

proof is deferred to Appendix D.6.1.

Theorem 6.1 (Verifier’s Dilemma). In a verification game in which

• A verifier’s report is binary, e.g. “Success” or “Fail”;

• The verification result of an honest proof is always “Success”;

• Honest verification has a strictly positive cost,

It is impossible to design an incentive mechanism realizing a pure-strategy Nash equilibrium

such that the prover and verifier(s) simultaneously act honestly.2

The Verifier’s Dilemma arises in settings where the fraction of cheating provers tends to

zero, making it optimal for verifiers to adopt lazy strategies. In such scenarios, any bounded

reward for catching a cheat cannot, in expectation, offset the cost of verification. Hence, a

traditional reward-based approach can only lower, but not eliminate, the rate of cheating in

the pool of proofs. This issue becomes particularly prominent in applications involving costly
2Although the Verifier’s Dilemma is sometimes understood as the tendency of verifiers to act lazily, our

study is aimed for a general purpose to design robust mechanisms incentivizing honest verification—i.e.,
verifiers are incentivized not only to avoid laziness but also to refrain from acting maliciously.
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verification—particularly for decentralized AI applications. For example, Conway et al. [130]

propose the opML (Optimistic Machine Learning), a more straightforward protocol than PoL

for decentralized trustworthy ML computation performed by at least two parties, in which

one prover essentially runs the computation and one or more verifiers simply re-run the

same procedure for verification. Conway et al. [130] show that their mechanism achieves a

mixed-strategy Nash equilibrium in which the prover has a C
R+L

probability to cheat, where

C is the verification cost and R+L is essentially the penalty imposed to the verifier for failing

to report a cheat plus the reward for successfully reporting one. In real-world blockchain

systems, penalties are typically upper bounded by the required stake and excessive rewards

may lead to inflation. As a result, higher verification costs exacerbate the dilemma: the

system must either demand larger stakes, suffer severe inflation, or tolerate a higher fraction

of dishonest proofs.

Recent studies are actively working on addressing the challenge of Verifier’s Dilemma,

but they mostly depend on certain extents of trusted authorities. A line of recent studies

attempts to bypass the binary-report assumption of Theorem 6.1 via introducing “attention

challenges” that contain extra information or deliberate errors, e.g., inserting deliberate

objects (which can be valid or invalid) as so-called “flags” to incentivize verifiers to find and

report, as in [4, 135, 136, 137, 154, 155], essentially bypassing the binary-report assumption

in Theorem 6.1. For example, Zhao et al. [4] propose a incentive-secure PoL protocol

in which the verifiers are supposed to verify a random subset of the training process, in

which the provers may use different designated random seeds as “flags” for the verifiers

to report, Sheng et al. [155] design the flags as traces of transaction computation, and

Teutsch and Reitwies,s’ner [136] design the flags as deliberately invalid proofs. However,

in the scenario where the verifiers may also be strategic or even malicious, the validity

of verification results, particularly for ML computation, can also be costly to verify.

Hence, in traditional decentralized ML verification protocols [4, 96], we generally need some

credibility assumptions on verifiers. Alternatively, other proposals invoke additional phases

of “committee voting” when disagreement occurs [130, 131], use heuristic reputation-based

designs [156], or resort to oracle-like entities [157, 158]. In these proposals, the committees,

high-reputation parties, or oracles are regarded as trusted authorities and act as proxies
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Table 6.1: The Simple-Agreement Scoring Rule

Z2 = 0 Z2 = F1 Z2 = F2 Z2 = 1

Z1 = 0 (1, 1) (−1,−1) (−1,−1) (−1,−1)
Z1 = F1 (−1,−1) (1, 1) (−1,−1) (−1,−1)
Z1 = F2 (−1,−1) (−1,−1) (1, 1) (−1,−1)
Z1 = 1 (−1,−1) (−1,−1) (−1,−1) (1, 1)

of ground truths, and these kinds of trusted authorities both lack theoretically guaranteed

credibility (beyond heuristics) and undermine decentralization. As long as we want to design

a fully decentralized system with no trusted authorities, the ground truth of proofs’ validity

may be inaccessible and payments can only be decided by consensus among the voting

parties. For reference, we defer detailed discussion on existing designs of decentralized AI

protocols to Appendix D.1.

In the operations literature, the technique of peer prediction [138] refers to a wide scope of

incentive mechanisms to elicit honest information without access to ground truth, which is

widely adopted in the applications of dataset acquisition [139], peer grading [159], and also

recent blockchain applications [140, 160]. A general paradigm of peer prediction is to ask

multiple players the same question (or overlapping question sets) and reward each player

based on the comparison between her report Zi and other players’ reports Z−i according to

a subtly designed scoring rule. As a toy example, in a 2-player simple-agreement scoring

rule, the two players receive +1 when their reports agree, and receive −1 otherwise. In this

case, the scoring rule Ri(Z1, Z2) is shown as Table 6.1.

Whereas the simple-agreement scoring rule may not theoretically incentivize truthful

reporting in all scenarios, the general purpose of peer prediction studies (including our

research) is to design refined scoring rules that secure such incentive guarantees (for example,

Table D.4 in Appendix D.4.) Nevertheless, whereas existing peer prediction mechanisms are

designed to elicit truthful reports in the absence of ground truth, the following challenges

occur in our setting for blockchain and particularly decentralized AI applications:

• Costly observation: Most traditional peer prediction mechanisms are designed to elicit

truthful reporting without considering observation costs, but in our setting we need

to incentivize the verifiers to make costly computational efforts to verify on-chain

contents, particularly for decentralized AI applications such as opML and PoL in which
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the verification processes are computationally intensive (as discussed in Appendix D.1).

• Robustness: Most traditional peer prediction mechanisms have strong assumptions

that may not apply in the decentralized setting of blockchain ecosystems,

particularly when players are anonymous and may be adversarial. Particularly,

we need permutation-proofness to disincentivize malicious reporting, Byzantine
robustness against adversarial peer verifiers, and distributional robustness
against dishonest proofs.

A widely adopted paradigm in literature is using mutual-information-based scoring rules

[8, 161]. While these types of scoring rules provide permutation-proofness and are convenient

for usage in scenarios with known prior, they do not explicitly consider costly observation,

and their Bayesian Nash equilibria do not ensure the Byzantine robustness if a small fraction

of peers are malicious. Furthermore, they also have a gap from resolving the Verifier’s

Dilemma due to the lack of distributional robustness, as the logarithm-based scoring rules

are sensitive to low probabilities. In the practice of blockchain systems, as the Verifier’s

Dilemma leads to an arbitrarily low cheating probability ϵ, its empirical value becomes

difficult to estimate and that sensitivity will severely undermine the robustness of the reward

mechanism.

In contrast to most peer prediction mechanisms that guarantee Bayesian Nash equilibria

requiring a known prior, a recent work [10] designs a determinant-based mutual information

(DMI) mechanism without the need of prior information. However, it does not satisfy

permutation-proofness: a verifier who systematically flips all her reports can still obtain

optimal rewards, rendering it inapplicable for blockchain verification. Conceptually, the DMI

mechanism is motivated to elicit informative (non-lazy) feedback rather than trustworthy

(non-lazy and also non-adversarial) ones. As the study of Kong and Schoenebeck [8] shows

that no peer prediction mechanism can satisfy prior-free and permutation-proof properties

simultaneously, the requirement of approximate prior knowledge remains necessary in

the application of decentralized verification games. Hence, assuming approximate prior

knowledge is theoretically justified in addressing the Verifier’s Dilemma in blockchain

applications.
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6.1.1 Our Contribution

In this research, we develop a theoretical framework with modeling of decentralized

verification game (DVG), and initiate the study that combines the ideas of flags and peer

prediction into our proposed mechanism, named capture-the-flag peer prediction (CTF-PP),

which only needs one phase in its procedure, and incentivizes honest verifying and reporting

via simultaneously satisfying the following properties that explicitly consider observation

costs:

• Interim unique incentive compatibility (interim UniIC): A verifier, after performing the

verification, maximizes her expected utility when she reports honestly. Furthermore, if

she reports a different type from her observation, her expected utility is non-positive.

• Interim individual rationality (interim IR): A verifier, after performing the verification,

gets a non-negative expected net utility, when she acts honestly.

• Interim no-free-lunch (interim NFL): A verifier cannot get a positive expected utility

via any uninformed strategy [162], i.e., without doing the verification.

Combining all the desired properties, we characterize the notion of incentive alignment

(δ-IA) as a general guideline for peer prediction mechanisms in decentralized verification

games, which depicts the property that any pure strategy gains a positive interim utility if

and only if it is honest, with a margin of δ (details in Section 6.3.3) aimed for Byzantine

robustness and distributional robustness. With this stronger incentive guarantee, we can

ensure that the peer prediction mechanism works as desired for the tricky setting of

decentralized environments in blockchains, with an additional guarantee to disincentivize

free-riding behavior in blockchain systems, particularly reinforcing economic foundations of

decentralized AI ecosystems in which verification can be costly.

We show the comparison of our design to existing peer prediction mechanisms in Table 6.2.

Beside theoretical derivations, we also perform extensive numerical experiments to show

the effectiveness of our design in comparison with existing peer prediction mechanisms in

different scenarios. (Section 6.7 and Appendix D.4-D.5)
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Table 6.2: Comparison of Peer Prediction Mechanisms for DVG.

Prior Observ. Cost Perm. Proof Byzan. Robust3 Distr. Robust4

Log-Based5 Needed × ✓ × ×
DMI6 Free × × n− 1 1

Ours Only Approximate ✓ ✓ Θ(n) Θ(1)

Our technical contributions can be summarized as follows:

1. We formulated the desired incentive guarantees (δ-IA) of 2-verifier decentralized

verification games (DVG) with a linear program (LP), and then illustrated the general

feasibility of the linear program via a generalization of the Cremer-McLean mechanism

[163]. Furthermore, we extend our methodology for general n-verifier DVG, showing a

basic solution for DVG that incentivizes honest verification and reporting, considering

observation costs and satisfying permutation proofness (Section 6.4).

2. More crucially, we discuss the Byzantine robustness properties and develop a general

guideline of the compactness criteria that wide incentive margins and relatively low

rewards/penalties realize good Byzantine robustness against malicious verifiers, and

design an extended LP that additionally optimizes the compactness and achieves

Byzantine robustness against an ϵ = O(1) fraction of malicious verifiers. We also

show that the compactness criteria simultaneously realizes budget efficiency as such

robustness guarantees only require an additional budget of O(ϵ). (See in Section 6.5)

3. Then, we observe the Byzantine reduction principle showing that inaccurate beliefs and

priors can be statistically reduced to existence of malicious players via the coupling

argument, and leverage this principle to connect the distributional robustness against

inaccurate priors/beliefs with the desiderata of the Byzantine robustness, showing the

generality of our compactness criteria for robust peer prediction mechanisms. (See in

Section 6.6)
3The maximum number of malicious verifiers that can be tolerated, n denoting the total number of

verifiers.
4The maximum noise in prior distributions that can be tolerated, in the sense of total variation (TV)

distance.[Move to caption]
5Including family of Shannon entropy-based peer prediction mechanisms that use logarithm-based scoring

rules, e.g., Kong and Schoenebeck [8], Zheng et al. [161].
6The mechanism proposed by Kong [10].
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6.2 Background and Related Work

Since the emergence of Bitcoin [78], the concept of blockchain is inherently designed as an

unalterable distributed ledger that maintains trustworthiness via decentralized consensus.

The blockchain can be modeled as a growing linked list stored by decentralized nodes, in

which each block contains its contents that consists of transactions, a hash reference of its

previous block, and a certificate (e.g., PoW, PoS and etc.) that controls the access to the

block. Conceptually, when a block producer, also called a miner, would like to pack and

propose new contents on the blockchain, she needs to attach the block to a previous block,

and pay certain efforts to gain access to produce the block. When a miner attaches a new

block to an existing block, she is supposed to have also verified the validity of the previous

block. This process also makes the previous block unalterable, because the new block would

be stored and witnessed by all the nodes of the network.

Nevertheless, in real-world blockchain ecosystems, the verifiers may be economically

rational or selfish. In this context, the Verifier’s Dilemma occurs. For example, Cao et al.

[164] propose an attack that leverages the Verifier’s Dilemma to double spend in Bitcoin.

Besides, the studies of Smuseva et al. [133], Alharby et al. [165] make extensive analyses on

Ethereum and the results show that Ethereum verifiers are frequently incentivized not to

verify the contents while they are supposed to, rendering the Ethereum protocol vulnerable.

That said, one may argue that in the original design of Bitcoin or Ethereum, the

verification of a block has negligible costs as it only needs the miner to check if all the

transactions and the Proof-of-Work (PoW) or Proof-of-Stake (PoS) is valid. Since invalid

blocks can be detected easily, miners might practically decide to behave honestly even if it is

(slightly) irrational. Nevertheless, the development of the blockchain technology generalized

the usage of blockchain system from an unalterable ledger of monetary transactions to

a general decentralized platform that guarantees the integrity of diverse contents, e.g.,

smart contracts [166, 167, 168], and furthermore, with the recent rapid development of AI

technologies and the demands of trustworthy AI models, researchers are actively exploring

to establish blockchain-based platforms that verify the computation of machine learning

[4, 96, 130, 150, 169], which brings new motivations for blockchain studies as a novel paradigm

118



of decentralized trustworthy AI.

Unlike hash puzzles in the Bitcoin PoW, the verification of such complicated contents can

be potentially costly. Particularly, in the context of ML verification, Fang et al. [100] show

that efficient byzantine-secure verification of stochastic gradient descent (SGD) computation

reduces to fundamentally hard open problems in deep learning theories. Even though the

study of Zhao et al. [4] achieves substantially lower verification overheads via the relaxation

to incentive-security, the verification protocol still needs to reproduce the training process

of at least Θ(1) epochs which has non-negligible computational costs. Consequently, recent

studies typically resort to weaker incentive properties for verification games. For example,

the recent proposal of opML [130], a protocol that designs for trustworthy ML inference

on blockchain, can only reach a mixed-strategy Nash equilibrium that a (small) constant

fraction of provers and verifiers behave dishonestly, and this fraction scales up with the

verification cost (as discussed in Introduction).

Because the Verifier’s Dilemma, unless suitably addressed, appears as a fundamental

vulnerability in the incentive structure of blockchains that may severely undermine the

reliability of blockchain systems, the studies of Zhang et al. [131], Teutsch and Reitwies,s’ner

[136] work on this issue via introducing deliberate invalid objects as attention challenges

that incentivize verification. Nevertheless, their protocols are multi-phased as they need

additional dispute processes and are potentially restricted to particular applications. In our

work, we are motivated to design a one-phase general-purpose and oracle-free solution to

the Verifier’s Dilemma with theoretical incentive guarantees, expecting to resolve the critical

incentive issue in decentralized verification games in a reliable and efficient paradigm.

6.3 Basic Modeling of Decentralized Verification Games

To initiate the study, we first formulate the modeling of decentralized verification games

(DVG). In a n-verifier DVG, there are n homogeneous players (verifiers) i = 1, · · · , n

independently verifying an on-chain proof, and we use the terms “player” and “verifier”

interchangeably.

The proof has an underlying ground-truth type θ ∈ S, which can be either “Honest”
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(θ = 0), “Flag j” (θ = Fj, for j = 1, 2, · · · ,m), or “Dishonest” (θ = 1). We define

S∗ = {0, F1, · · · , Fm} as the set of all non-dishonest types. The actual type θ is unknown

to both the verifiers and the system. While the observations {Xi} can potentially be noisy,

every verifier’s observation, when they actively verify the proof, is i.i.d. conditioned on θ

with known distributions {P (Xi|θ)}.7 Since the system can insert flags to maintain a pre-

set flag rate (as in Zhao et al. [4], Teutsch and Reitwies,s’ner [136], Smuseva et al. [154],

etc.) that robustly incentivizes verification when no cheater occurs, we have principal prior

probabilities P (θ = Fi) = pFi
and P (θ = 0) = p0 as publicly known information, with∑

θ∈S∗ P (θ) = 1 and the principal probability of θ = 1 is zero. Throughout the paper, the

term “principal” refers exclusively to this cheater-free scenario.

However, in reality, the prior distribution slightly deviates from the principal scenario

as there is a small but unknown probability ϵ ∈ [0, ϵ0] that the proof is dishonest, i.e.,

P (θ = 1) = ϵ, with a known upper bound ϵ0. We assume that the appearance of dishonest

proofs may take up the probabilities of types in S∗ in an arbitrary way. Hence, for any

s ∈ S∗ we have P (θ = s) = ps−ϵs, in which
∑

s∈S∗
ϵs = ϵ but the exact values of {ϵs} remain

unknown.

Similar to [4], we begin our discussion with the verification process in a lossy-channel

model as follows, and then study the general case (as shown in Theorem 6.2). When verifier

i verifies the proof, the distribution of the observation Xi is dependent on θ in this way:

• Completeness: A honest proof is always observed as honest, i.e. P (Xi = 0|θ = 0) =

1.

• Probabilistic soundness: A dishonest proof can be observed as any type, but the

probabilities are known to the public, and the probability of correct detection at least

κ > 0, i.e. P (Xi = 1|θ = 1) ≥ κ.

• Benign flags: A flag Fj can be detected with known probability µj > 0 or missed

and observed as honest, but will never be observed as dishonest or other flags, i.e.

P (Xi = Fj|θ = Fj) = µj and P (Xi = 0|θ = Fj) = 1− µj.
7The symmetry/homogeneity among verifiers can be assumed both according to the fixed verification

protocols and the anonymity of decentralized systems.
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Verification protocol. For each verifier i, she first needs to stake a pre-specified amount

L of tokens to the system, and is informed that she will be rewarded based on a public

scoring rule denoted as Ri(Zi,Z−i), in which Zi is her report, Z−i is the collection of other

verifiers’ reports, and the maximum possible penalty cannot exceed the staked amount,

i.e., Ri(Zi,Z−i) ≥ −L. Then, the verifier makes a decision to follow one of the following

strategies, or any mixture between them:

1. Informed (active) strategy: Actively verifies the proof and gets the observation, which

gains her access to Xi but incurs a publicly-known cost c(Xi) ≥ 0 which can depend

on Xi.

2. Uninformed (lazy) strategy: Does not verify and has no access to Xi. For convenience

of expression, we can denote Xi = ⊥ in this case, and c(⊥) = 0.

Hence, verifier i’s Bayesian belief B on Z−i is the conditional distribution of P (X−i|Xi) for

the informed strategy, or the marginal distribution P (X−i|⊥) = P (X−i) for the uninformed

strategy. Here, i’s belief of the cheating probability can be an arbitrary ϵ(i) ∈ [0, ϵ0] that

can be different from the actual ϵ, with arbitrary {ϵ(i)s } such that
∑

s∈S∗
ϵ
(i)
s = ϵ(i), and we

desire to design a mechanism that uniformly satisfies the incentive guarantees for arbitrary

{ϵ(i)s }. In this context, we define the principal belief as the Bayesian belief given ∀ϵ(i)s = 0,

i.e., ϵ0 = 0.

Then, verifier i reports a Zi that maximizes EZ̃−i∼B[Ri(Zi, Z̃−i)] in which B is her belief

of Z−i, and claims that Zi is her observation. After each verifier i independently reports Zi

without seeing Z−i
8, the system has the information of Z1, · · · , Zn, but not θ, and rewards

each prover i according to the scoring rule Ri(Zi,Z−i). If Ri(Zi,Z−i) < 0, the penalty will

be deducted from her staked tokens. Then, verifier i’s net utility is Ri(Zi,Z−i)− c(Xi).

Formal characterization of strategies and utilities. For the action of any verifier

i, she may first decide to be active (informed) or lazy (uninformed). If she chooses to be

lazy, then she can choose a distribution D ∈ ∆(S), in which ∆(S) is the set of all convex

combinations of elements in S, and report Zi ∼ D. If she chooses to be active, she may
8This can be implemented via a cryptographic commitment scheme.
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observe Xi and report according to a respective distribution corresponding to each Xi ∈ S,

so any informed strategy can be characterized by a mapping D(·) : S → ∆(S). Furthermore,

the verifier can also randomly decide to be active or lazy. Hence, we formally characterize

the verifiers’ strategies as:

Definition 23. The strategy space of any verifier can be characterized as

Ω = Ω(S) = ∆({∆(S),∆(S)S}),

and we denote the strategy of verifier i as si.

For example, si ∈ ∆(S) if i chooses an uninformed strategy, and si ∈ ∆(S)S if i chooses

an informed strategy. Otherwise, if si is a random choice between informed and uninformed

strategies, we can represent si with the 3-tuple (λ, µ, α), denoted as

si ≜ (λ, µ, α),

in which λ ∈ ∆(S), µ ∈ ∆(S)S, α ∈ (0, 1) and si = α · λ+ (1− α) · µ.

For any verifier, she would maximize her expected utility based on her belief on the reports
of other verifiers. The belief profile of verifier i can be characterized as Bi : (S ∪ {⊥}) →
∆(Sn−1) which maps her observation to a joint distribution of other verifiers’ reports. For
Bayesian verifiers, they always set their belief as Bi(Xi) = P (X−i|Xi). Then, with regard to
belief Bi, we can define the interim utility ui(si;Bi) as:

ui(si;Bi) =


EZi∼si,Z−i∼Bi(⊥)[Ri(Zi,Z−i)], si ∈ ∆(S);

EXi∼P (Xi)[EZi∼si(Xi),Z−i∼Bi(Xi)[Ri(Zi,Z−i)− c(Xi)]], si ∈ ∆(S)S ;

α · ui(λ;Bi) + (1− α) · ui(µ;Bi), si ≜ (λ, µ, α).

(6.1)

In most parts of this paper (except for the discussion of Byzantine robustness and

Appendix D.2), we always assume that all verifiers have principal Bayesian beliefs Bi(Xi) =

P (X−i|Xi) assuming ϵ = 0 (we justify using ϵ = 0 in place of small unknown ϵ > 0 in the

robustness analysis of Section 6.6). Hence, we simplify the notation as ui(si). We call a
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strategy honest or truthful if and only if si = I is (induced by) the identity map on S, i.e.

s ∈ ∆(S)S and s(Xi) ≡ Xi.

Pure & mixed strategies. In the strategy space Ω, we define the subset Ωd = S ∪ SS

as the space of pure strategies, in which the verifier deterministically decides to be informed

or uninformed, and reacts deterministically to her observation. From the linearity of the

utility function, we can see that the optimal utility is always realized by a pure strategy for

any fixed belief, and hence we mainly consider pure strategies throughout this paper.

6.3.1 IR and UniIC Constraints for Informed Verifiers

The IR constraint requires that given the verifier i observes Xi, truthfully reporting it gains
her an expected reward no less than c(Xi). Since Xi and X−i are independent conditioned
on θ, define rXi

(Zi) as verifier i’s expected reward of reporting Zi conditioned on observing
Xi, then rXi

(Zi) can be computed as

rXi(Zi) =
∑

X−i∈S
Ri(Zi,X−i)P (X−i|Xi) (6.2)

=
∑

X−i∈S
Ri(Zi,X−i)

P (Xi,X−i)

P (Xi)
(6.3)

=
∑

X−i∈S
Ri(Zi,X−i)

∑
θ∈S P (θ)P (Xi|θ)P (X−i|θ)∑

θ∈S P (θ)P (Xi|θ)
. (6.4)

While the probabilities are dependent on ϵ, as long as ϵ is small enough, for Xi ∈ S∗, the

rXi
is a continuous function w.r.t. ϵ, so the IR constraints on Xi ∈ S∗ can be implied by

∑
X−i∈S

Ri(Xi,X−i)

∑
θ∈S P̃ (θ)P̃ (Xi|θ)P̃ (X−i|θ)∑

θ∈S P̃ (θ)P̃ (Xi|θ)
≥ c(Xi) + δ, ∀Xi ∈ S∗, (6.5)

in which P̃ denotes the principal probabilities assuming ϵ = 0, and the margin δ is introduced

to ensure the incentive guarantees even if the actual priors slightly deviate from the principal

priors, so that for any δ > 0, the constraints hold robustly for some ϵ0 > 0. The condition

is also necessary when δ = 0. In the rest of this paper, we say a condition is “sufficient and

almost necessary” when it is sufficient with a ϵ0 > 0 depending on δ, and when we set δ = 0,
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it becomes a necessary condition. We defer the rigorous justification of the “sufficiency” and

quantitative analysis on the relations between δ and ϵ0 to Section 6.6.

For the case of Xi = 1, from the lossy-channel model, we know that θ = 1. Therefore, we

have

r1(1) =
∑

X−i∈S

Ri(1,X−i)P (X−i|θ = 1) ≥ c(1) + δ. (6.6)

So Eqs. (6.5-6.6) are sufficient and almost necessary conditions that a CTF-PP mechanism

is IR.

For the IC constraint, we need and only need rXi
(Xi) = maxZi∈S{rXi

(Zi)}. With similar

arguments, we can also develop sufficient and almost necessary conditions that a CTF-PP

mechanism is IC. Actually, given that the IR is satisfied we can define a stronger notion of

Uniquely-IC as follows:

• Uniquely IC (UniIC): In addition to the IC requirement, given all other verifiers act

honestly and a verifier actively performed the verification, then she gets a negative

expected utility when she reports any type different from her observation.

Besides conventional IC notions, the UniIC requirement additionally rules out the

possibility that a dishonest verifier cheats the system without losing money. Assuming

that the IR constraints are already satisfied, the UniIC constraints can be formulated as:

rXi
(Zi) ≤ c(Xi)− δ, ∀Xi ∈ S, Zi ̸= Xi. (6.7)

6.3.2 NFL Constraints for Uninformed Verifiers

We assume verifiers other than i are honest, i.e. they all decide on the informed strategy

and Z−i = X−i. If verifier i performs the uninformed strategy, she has no information on θ

and her strategy can only be reporting any type in S = {0, F1, · · · , Fm, 1}, or any convex

combination of them. Hence, i’s utility when she lazily reports Zi is denoted as:

r⊥(Zi) =
∑

X−i∈S

Ri(Zi,X−i)P (X−i). (6.8)
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From the NFL requirement and assuming small ϵ ≤ ϵ0, a sufficient and almost necessary

condition is the following linear constraints

∑
X−i∈S

Ri(Zi,X−i)P (X−i) ≤ −δ, ∀Zi ∈ S. (6.9)

6.3.3 Incentive Alignment for Decentralized Verification Games

From the discussion in Section 6.3.1-6.3.2, we would like to design a mechanism for the

decentralized verification game that simultaneously satisfies IR, UniIC, and NFL constraints.

Combining the derivations above, we can summarize the sufficient and almost necessary

conditions that satisfy all constraints above. Hence, we define the notion of incentive

alignment (δ-IA) as follows:

Definition 24 (Incentive Alignment). A CTF-PP mechanism is δ-incentive-aligned (δ-IA)
if and only if for any verifier i and pure strategy si ∈ Ωd,

ui(si)


≥ δ, si = I;

≤ −δ, si ̸= I.

Equivalently,

rXi(Zi)− c(Xi)


≥ δ, Zi = Xi;

≤ −δ, Zi ̸= Xi.

Here, the δ-IA is a sufficient and almost necessary condition that IR, UniIC and NFL are

simultaneously satisfied.

6.4 Theoretical Guarantee for DVG: LP Modeling and Feasibility

In this section, we show a basic result on the existence of incentive aligned CTF-PP

mechanisms for any 2-verifier DVG that satisfies mild conditions, and then generalize our

design to a general setting of n verifiers.
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6.4.1 The 2-verifier Case

Assume ϵ = 0, and define the principal belief matrix B : S2 → R as Bxy = P (X−i = y|Xi =

x).9 Besides, we define B⊥ as the blind-belief (row) vector as B⊥y = P (X−i = y) that

describes the belief of verifier i when she does not verify the proof. Then, we can formulate

the design of a δ-IA CTF-PP mechanism as a linear programming (LP) problem.

We define decision variable as the scoring matrix T : S2 → R with Txy = Ri(x, y), and

denote

W = BT ′. (6.10)

Then Wxy = rx(y), which is the expected reward verifier i gets from the mechanism when
she observes x and reports y. The IR and UniIC conditions are equivalent to the following:

Wxx ≥ c(x) + δ, ∀x ∈ S; (6.11)

Wxy ≤ c(x)− δ, ∀x ∈ S, y ∈ S − {x}. (6.12)

Similarly, we denote

W⊥ = B⊥T
′, (6.13)

then W⊥y = r⊥(y) is the expected reward verifier i gets when she does not verify and lazily

reports y. Then the NFL conditions are equivalent to the following:

W⊥ ≤ −δ. (6.14)

Hence, we only need to find a feasible solution of the linear system (6.10-6.14), i.e., solve the
following linear program:

LP0 : minimize 0

s.t. (6.10-6.14).

Here, inspired by the Cremer-McLean mechanism [163], we propose our basic theorem that

shows the feasibility of LP0, with the proof deferred to Appendix D.6.2:
9B1y can still be defined even if P (θ = 1) = ϵ = 0, e.g. θ = 1 when a zero-measure set is drawn.
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Theorem 6.2 (Basic Theorem). If B is invertible, and P (Xi = y|θ = 1) = 0 for any y ̸= 1

(i.e., a non-cheating proof is never observed as a cheat), then for any δ ≥ 0, we can find a

δ-IA mechanism for the 2-verifier DVG as a feasible solution of LP0.

For some ϵ0 > 0, the mechanism is IR, NFL and UniIC for any ϵ ∈ [0, ϵ0].

Particularly, we show that our method always works for the DVG with the lossy-channel

model as defined in Section 6.3 with the following proposition. The proof is deferred to

Appendix D.6.3.

Proposition 6.3. In the lossy-channel model defined in Section 6.3, the principal belief

matrix B is invertible.

6.4.2 General n-Verifier Case

We have just shown that under mild assumptions there always exists an incentive-aligned

mechanism for any 2-verifier DVG. In this part we invoke the 2-verifier mechanism as a

building block and construct our mechanism for the general setting of n verifiers.

Vectorized notation. In the 2-verifier game, the (Zi, Zj)-th entry of the matrix T ,

denoted as TZiZj
, depicts the reward of verifier i when she reports Zi while the other verifier

j reports Zj. With a slight abuse of notation, if we regard each type in S as a unit one-hot

column vector in the corresponding dimension, we can get TZiZj
= Z ′

iTZj. In the general

case of n verifiers, we use a pairwise-scoring mechanism that compares every verifier’s report

with the average of other verifiers’, which can be formulated as:

Ri(Zi,Z−i) = Z ′
iTZ−i. (6.15)

Here, we denote

Z−i =
1

n− 1

∑
j ̸=i

Zj. (6.16)

Then, we can show that the pairwise-scoring mechanism as described as Eq. (6.15) has

equivalent incentive structures as the 2-verifier mechanism characterized as T . Formally, we

have:
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Theorem 6.4. If the scoring matrix T satisfies the δ-IA property for the 2-verifier DVG,

then the scoring rule as Eq. (6.15) also satisfies δ-IA for the general n-verifier DVG.

Furthermore, if the 2-verifier mechanism characterized as T is IR, NFL and UniIC for

any ϵ ∈ [0, ϵ0], then the n-verifier mechanism in Eq. (6.15) also satisfies the same properties.

The proof of Theorem 6.4 is deferred to Appendix D.6.4.

6.5 Byzantine Robustness via Margin Optimization

In the context of (Bayesian) Nash equilibria, we aim to design mechanisms in which no agent

may benefit from individual deviations. In other words, we guarantee that each verifier

is incentivized to be honest given that all others are honest. However, in decentralized

ecosystems like blockchains, this assumption may be too strong as there may exist malicious

players who would deliberately attack the system, i.e., trying to undermine the robustness of

the system at the risk of losing their own utilities. Furthermore, just like the widely studied

topic of blockchain transaction fee mechanisms (See, e.g., Chen et al. [3], Roughgarden

[37], Chung and Shi [41], Roughgarden [42], Wu et al. [45]), blockchain players may also

potentially collude with each other or create fake identities to increase their utilities. Because

the blockchain consensus protocols, e.g., PoW or PoS, can inherently address the Sybil attack

issue, in this study we mainly consider non-Sybil dishonest players who do not conduct Sybil

attacks but may act adversarially otherwise.

Whereas it may be too strong to assume that all other players are individually rational,

in the field of decentralized systems, the notion of Byzantine robustness (See, e.g., Yin et al.

[170], Wu et al. [171], Chen et al. [172]), also called Byzantine fault tolerance or Byzantine

resilience, is widely studied as a desired property that the system works robustly as expected

even if a (small) portion of the system does not work correctly. In the works of Wang et al.

[140], Schoenebeck et al. [173], the existence of colluding players is also considered for peer

prediction mechanisms. Particularly, Schoenebeck et al. [173] consider the multi-task setting

and tackle with it as a robust learning problem, and Wang et al. [140] focus on the specific

leader election problem [174] for blockchain consensus. In another perspective, Frongillo
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and Witkowski [175] look into the scenario of peer prediction with inaccurate distributional

knowledge, and develop a margin optimization methodology to maximize the tolerance to

inaccurate posterior beliefs.

Inspired by these studies, we are motivated to design a general-purpose solution for

decentralized consensus with stronger incentive alignment guarantees, with an optimization

framework of Byzantine robustness via the the compactness criteria (See in Section 6.5.2.)

Furthermore, we show the budget efficiency of our design in Section 6.5.5, and will show

in Section 6.6 the generality of our Byzantine robustness notion as it can also imply

distributional robustness. Following the framework in the study of Schoenebeck et al. [173],

the types of players can be generally classified into the following categories:

1. Altruistic (A ): Acting honestly without consideration of utilities;

2. Selfish (S ): Acting in the way that maximizes their own utilities;

3. Colluding (C ): Conducting collusions with other players (within C ) to maximize their

joint utility;

4. Malicious (M ): Acting in arbitrarily manners that may not optimize their utilities,

without access of non-malicious players’ information.

While traditional game theory primarily focuses on the behavior of A and S players, C

and M players typically fall outside the scope of its standard models. Therefore, we call

A ,S players as benign and C ,M players as rogue.

Intuitively, we would like to design the mechanism in the following way: as long as rogue

verifiers only constitute a small portion, all four types of verifiers are incentivized to act

honestly, even though malicious players may actually act in different manners at the cost

of their own utilities. However, we still assume that malicious players cannot access non-

malicious players’ information (e.g. observations and reports) as the unauthorized access

of non-malicious players’ information should be prevented by the system design, and also

breaks the basic model of Bayesian games.
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6.5.1 Characterization of Robust Incentive Properties

To ensure that arbitrary actions of malicious players do not affect the incentive guarantees

of other players even in the worst case, we introduce the notion of robust incentive properties

describing the scenario in which the incentive properties holding uniformly for any possible

realization of malicious players’ actions.

In this case, we can define ϕ as the environmental variable that depicts the prior

probabilities, the number of A ,S ,C ,M players, and the strategies of M players. While

players might not have the exact information of ϕ, they do have the knowledge that ϕ lies

in a set Φ of environmental assumptions, e.g., the total number of C ,M players does not

exceed a particular threshold.

The motivation of robust incentive properties is to guarantee that the players will not

regret their honest actions even if they learn the existence and actions of the malicious

players ex-post, so that these malicious behavior would not affect the incentive guarantees

for the majority of non-malicious players. In other words, in a mechanism with robust

incentive guarantees, the desired properties hold uniformly for any ϕ ∈ Φ, similar to the

framework of distributionally robust optimization [176].
In this context, given different environment variables, the player i would have different

beliefs of the other players’ reports, and we can characterize the belief profile of player
i as Bi : (S ∪ {⊥}) × Φ → ∆(Sn−1), which maps the tuple of her observation and the
environment variable to a joint distribution of other players’ reports. Different from the
model in Section 6.3, the players do not have a prior distribution of ϕ ∈ Φ. Hence, similar to
the characterization of partial distributional knowledge in [177], for any strategy si, player i
would actually have a belief interval [uΦ−

i (si;Bi), u
Φ+
i (si;Bi)] of its utility among all possible

ϕ’s, formulated as

uΦ−
i (si;Bi) = inf

ϕ∈Φ
uϕ(si;Bi),

uΦ+
i (si;Bi) = sup

ϕ∈Φ
uϕ(si;Bi),
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in which

uϕi (si;Bi) =


EZi∼si,Z−i∼Bi(⊥,ϕ)[Ri(Zi,Z−i)], si ∈ ∆(S);

EXi∼P (Xi)[EZi∼si(Xi),Z−i∼Bi(Xi,ϕ)[Ri(Zi,Z−i)− c(Xi)]], si ∈ ∆(S)S ;

α · ui(λ;Bi) + (1− α) · ui(µ;Bi), si ≜ (λ, µ, α).

(6.17)

In this section, we also mainly consider Bayesian players with Bi(Xi, ϕ) = P (X−i|Xi, ϕ),

and denote uϕi (si) ,uΦ−
i (si), uΦ+

i (si) in this case for simplicity. Then with the general guideline

that the incentive properties should uniformly hold for any ϕ ∈ Φ, we define the notion of

robust utility maximization and robust IA as follows:

Definition 25 (Robust Utility Maximization). In a fixed mechanism, a strategy si robustly

maximizes player i’s utility w.r.t. environmental assumption Φ, if and only if for any strategy

s′i ∈ Ω,

uϕ(si) ≥ uϕ(s′i), ∀ϕ ∈ Φ.

Definition 26 (Robust Incentive Alignment). A mechanism satisfies robust δ-IA w.r.t.

environmental assumption Φ, if and only if for any player i and pure strategy si ∈ Ωd,

uΦ−
i (si) ≥ δ, si = I;

uΦ+
i (si) ≤ −δ, si ̸= I.

Here, we denote I as the honest informed strategy, i.e., si ∈ ∆(S)s and si(Xi) ≡ Xi.

From the notions above, we formally define the notion of f(n)-Byzantine-robustness (f(n)-

BR) as follows:

Definition 27 (Byzantine Robustness). For a DVG with n verifiers, we call a mechanism

f(n)-BR if and only if: as long as Φ constrains that the total number of rogue (C and M )

verifiers does not exceed f(n),

• Each A ,S ,C verifier robustly maximizes her interim utility via acting honestly with

robust 0-IA guarantees, assuming that other A ,S ,C verifiers act honestly.
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• Each colluding party in C robustly maximizes their total interim utility via acting

honestly, assuming that all A ,S verifiers and other colluding parties in C act honestly.

• Each M verifier would robustly maximize their interim utilities with robust 0-IA

guarantees if she acted honestly, even though she may actually act otherwise, assuming

that all A ,S ,C verifiers act honestly.

In the rest of this section, we show that under mild assumptions, the design in Section 6.4.2,

as long as the scoring matrix T comes from a “good” solution of the linear system Eqs. (6.11-

6.14), is Θ(n)-BR, i.e., resilient against a constant portion of rogue verifiers.

6.5.2 Bang for the Buck: Compactness Criteria for Byzantine Robustness

When we look at the pairwise-scoring mechanism Eq. (6.15), the reward of each verifier i

is essentially based on the comparison of her report Zi and the average of other verifiers’

reports Z−i. Intuitively, if only a small portion of other verifiers may act dishonestly, since

their contribution to Z−i is not significant, the actual expectation of Z−i conditioned on

Xi would not deviate significantly from E
[
X−i

∣∣Xi

]
, and the δ margin in our design would

make the reward matrix of i still satisfy incentive alignment properties even with a slightly

perturbed posterior distribution of Z−i.

For simplicity of discussion, in the family of rogue verifiers, we first only consider simple

malicious ones who could not create fake identities but may act unpredictably and report

in any strategy, as in the canonical Byzantine setting defined in Definition 28 below. In

later sections, we will show that (certain types of) collusions can also be reduced to the

canonical Byzantine setting (details in Section 6.5.4). For Sybil attacks, while no voting-

based protocols can effectively prevent them if the attacker has unlimited resources (e.g., 51%

attack [178]), each Sybil identity can also be regarded as a (new) malicious agent and, as long

as they only make up a small portion of all verifiers, our framework of Byzantine robustness

can prevent them from harming the incentive structure of other verifiers. Furthermore, since

gaining additional voting power in PoW or PoS protocols has additional costs, we can show

that as long as the total resources (e.g., computing power for PoW or stakes for PoS) of
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the verifier only makes up a small portion of the network, she could not gain a significant

advantage via Sybil attacks compared to honest behavior.

Definition 28 (Canonical Byzantine Setting). In a canonical Byzantine setting, each verifier

acts in one of the following strategies:

• No-Sybil selfish (S∗): Acting in a way that maximizes their own utilities, but unable

to create fake identities.

• No-Sybil malicious (M∗): Reporting arbitrarily, but unable to create fake identities.

From the pairwise-scoring mechanism, we can see that conditioned on the verifier i

observing Xi ∈ S ∪ {⊥}, the expected utility of reporting Zi is

rXi
(Zi)− c(Xi) =

1

n− 1

∑
j ̸=i

∑
Zj∈S

P (Zj|Xi)TZiZj
− c(Xi)

 . (6.18)

When verifier j is honest, we see that Zj = Xj and
∑

Xj∈S P (Zj|Xi)TZiZj
− c(Xi) =

(BT ′)XiZi
− c(Xi) = WXiZi

, and the δ-IA condition ensures that W ’s diagonal entries are

at least +δ and other entries are at most −δ. If j is dishonest, then her report Zj may

deviate from Xj, resulting in a different
∑

Xj∈S P (Zj|Xi)TZiZj
and leading to a perturbation

to rXi
(Zi).

Intuitively, if the summation of all these perturbations is bounded below δ, then {rXi
(Zi)−

c(Xi)} still has positive diagonal entries and negative non-diagonal entries, satisfying the

robust incentive alignment property (with a smaller margin). On the other hand, we notice

that
∑

Xj∈S P (Zj|Xi)TZiZj
is a convex combination of {TZiZj

: Zj ∈ S}. If we upper bound

the magnitude of the scoring rule, i.e.

|TZiZj
| ≤ K, ∀Zi, Zj ∈ S, (6.19)

then we can deduce that ∑
Zj∈S

P (Zj|Xi)TZiZj
∈ [−K,K]. (6.20)
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Hence, each dishonest verifier j can perturb the value of rXi
(Zi) by at most 2K

n−1
, so a large

incentive margin δ with a relatively small K would achieve a good “bang for the buck” for

desired Byzantine-robust guarantees. In this sense, we define (δ,K)-compactness as:

Definition 29 ((δ,K)-compactness). For fixed observation costs c(·) and principal belief

matrix B (denoted as the (c, B)-environment), a pairwise scoring matrix T is called (δ,K)-

compact if and only if its entries are bounded within [−K,K] and the corresponding

mechanism is δ-IA.

For convenience, we also call a mechanism (or a pairwise scoring matrix) δ
K

-compact if it

is (δ,K)-compact for some (δ,K).

Then, we immediately derive the following lemma, showing that (δ,K)-compactness

implies the Byzantine robustness against a Θ( δ
K
) fraction of malicious players:

Lemma 6.1. If a CTF-PP mechanism has a (δ,K)-compact pairwise scoring matrix, then

it is δ
2K

(n− 1)-BR in the canonical Byzantine setting, as it is 0-IA even in the presence of

up to δ
2K

(n− 1) malicious players.

In the following parts we focus on the construction of (δ,K)-compact pairwise scoring

matrices with optimized δ
K

.

6.5.3 LP Modeling for Byzantine Robustness

In Section 6.4, we formulated the δ-IA condition for the 2-verifier DVG as the linear system

of (6.11-6.14), and showed that the linear system is generally feasible, so that a desirable

mechanism can be found via linear programming, and further showed that the LP solution

generalizes to the n-verifier setting, so that our proposal is a general-purposed solution for

the design of DVG mechanisms.
Whereas the general paradigm of incentive requirements in peer prediction can be depicted

with the linear system, the LP problem actually allows us to optimize an objective function,
which is not specified in previous parts. Considering the motivation of Byzantine robustness,
from Lemma 6.1 we would like to construct a (δ,K)-compact scoring matrix with a large
δ
K

. Hence, an intuitive idea is to fix δ and minimize K. For fixed principal belief matrix B,
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prior distribution vector B⊥ and observation costs c(·), we can formulate the LP problem
LP1(B,B⊥, c, δ) with decision variable

(
K ∈ R, T ∈ RS2) as:

LP1(B,B⊥, c, δ) :

minimize K (6.21)

s.t. |T | ≤ K, (6.22)

(BT ′)xx ≥ c(x) + δ, ∀x ∈ S (6.23)

(BT ′)xy ≤ c(x)− δ, ∀x ∈ S, y ∈ S − {x} (6.24)

B⊥T
′ ≤ −δ. (6.25)

In fact, denoting K∗ = (B,B⊥, c, δ) as the optimal objective value of LP1(B,B⊥, c, δ), we

can show an upper bound on K∗(B,B⊥, c, δ) as:

Theorem 6.5. Denote c1 = maxx∈S{c(x)} as the maximum observation cost, p1 =

max{B⊥} = maxx∈S{P (Xi = x)} as the maximum prior probability of any observation,

and k = |S| = m+ 2 as the number of types, then we have

K∗(B,B⊥, c, δ) ≤ ∥B−1∥2 · (c1 · g1(k, p1) + δ · g2(k, p1)) , (6.26)

in which

g1(k, p1) =

√(
1 + (k − 1)

p1
1− p1

)(
1 +

1

1− p1

)
= O

( √
kp1

1− p1

)
, (6.27)

g2(k, p1) =

√(
k + (2k − 2)

p1
1− p1

)(
k +

2

1− p1

)
= O

(
max

{
k

√
p1

1− p1
,

√
kp1

1− p1

})
. (6.28)

are only dependent on k, p1 but independent to n.

Additionally, there exists a feasible solution satisfying (6.26) that makes the equality hold

in (6.23).

The proof of Theorem 6.5 is deferred to Appendix D.6.5.
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6.5.4 Reduction of Colluding Players

For the characterization of Byzantine players, it is intuitive that colluding behavior is within

the scope of malicious behavior, and the resilience against malicious players should infer the

resilience against colluding players. While this proposition is true, the reduction is actually

non-trivial.

From the classification of players, we only consider the external effects and individual

incentives of malicious players, i.e., their existence does not disrupt the incentive alignment

guarantees of other players or benefit individual utilities. However, in the consideration

of colluding players, we still need to prevent them from gaining total utility via collusion,

i.e., we also need to consider internal effects of collusion which is not covered in previous

discussion. Similar to the Side-Contract-Proofness (SCP) notion proposed by Chung and

Shi [41], we define weak-SCP in the scope of DVGs as follows:

Definition 30 (weak-Side-Contract-Proofness (weak-SCP)). We further define C∗ players

as:

• No-Sybil colluding (C∗): Conducting collusions with other players (within C∗) to

maximize their joint utility, but unable to create fake identities.

We call a mechanism weak-Side-Contract-Proof (weak-SCP) under some conditions, if and

only if as long as these conditions hold, in any collusion party, the players robustly maximize

their total interim utility w.r.t. their individual (non-shared) Bayesian beliefs (P (X−i|Xi))

via acting honestly.

We call this notion weak-SCP because although players collude with each other, they

still update their posterior beliefs only based on their own observations, not considering

other colluders’ observations as they might not “fully trust each other”. In turn, we call

the collusion-proofness against colluders who share their beliefs based on their aggregated

observations strong-SCP. Nevertheless, there are additional challenges in the design of strong-

SCP peer prediction mechanisms and we leave it to future work. The intuition behind

such challenges is that a belief-sharing colluding party would be incentivized to report the

same type even though they may have different observations. On the bright side, from
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Proposition 6.6, although belief-sharing colluders may benefit from collusions, they do not

disturb the incentive guarantees of other players as long as they only constitute a small

portion of all players. We defer detailed discussions on strong-SCP to Appendix D.2.

In actual cases, there may exist multiple colluding parties, but from the argument in the

player classification, for any selfish player or colluding party that intend to maximize their

total utility, other colluding players outside the party do not have access to their actions or

observations, and only need to be considered w.r.t. their external effects. Hence, we can

deduce that

Proposition 6.6. Colluding players can be regarded as malicious players from the perspective

of players outside their colluding parties.

With Proposition 6.6, we only need to consider the existence of one colluding party of

collusion players, beside a (small) number of malicious players. Formally, we have the

following theorem:

Theorem 6.7. Assume that there are n players, among which are |M∗| no-sybil malicious

players and a no-sybil colluding party of |C∗| players. If the CTF-PP mechanism has a

(δ,K)-compact scoring matrix, then the mechanism is 0-IA and weak-SCP as long as

|M∗|+ |C∗| ≤
δ

2K
(n− 1).

The proof of Theorem 6.7 is deferred to Appendix D.6.6. From Theorem 6.7, we show that

in the weak-SCP notion, colluding players can also be reduced to malicious players w.r.t.

the weak-SCP notion for the Byzantine-robustness results of Theorem 6.5.

6.5.5 Budget and Cost of Robustness

In real-world information elicitation and crowdsourcing applications, the principal may

also aim to minimize the total budget while maintaining the desired level of information

quality. Even within blockchain ecosystems, where tokens can be minted at will, excessive

token issuance should be avoided to prevent inflation and the consequent devaluation of the

cryptocurrency.
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In the specific context of decentralized verification games, our goal is ideally to compensate

verifiers exactly according to their (expected) verification costs—this serves as a natural

lower bound on the total budget, provided that individual rationality (IR) constraints are

satisfied. Moreover, to ensure robustness, we may impose an additional δ-margin as specified

by the (δ,K)-compactness criterion. Under this requirement, the lower bound on the budget

becomes the expected verification cost plus δ, where the δ term can be interpreted as the

cost of robustness.

For this analysis, we assume ϵ = 0 and that all verifiers are honest. Let c denote the

expected verification cost, and r the expected payment to a verifier, both taken over the

distribution of ground-truth states θ and corresponding observations. We then define the

cost of robustness as:

µ = r − c.

It follows directly that µ ≥ δ. Furthermore, from Theorem 6.5, we can infer the existence

of a feasible solution to LP1 such that equality holds in Eq. (6.23) (implying that µ = δ), and

thatK ≤ ∥B−1∥2·(c1+O(δ)). Therefore, when δ → 0, the mechanism achieves Θ
(

δ
c1·∥B−1∥2

)
-

compactness and is robust against a Θ
(

δ
c1·∥B−1∥2

)
fraction of adversarial verifiers. Formally,

we have:

Theorem 6.8. For η < 1
g2(k,p1)∥B−1∥2 , in order to ensure η compactness, we only need a

margin and cost of robustness

µ = δ ≤ ηc1g1(k, p1)∥B−1∥2
1− ηg2(k, p1)∥B−1∥2

. (6.29)

The proof is deferred to Appendix D.6.7.

6.6 Byzantine Reduction for Inaccurate Beliefs and Priors

In Section 6.5, we discussed the construction of Byzantine-robust mechanisms for

decentralized verification games in the presence of a small fraction of malicious players,
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assuming the prior knowledge of the distribution of θ is accurate. However, due to the

possible existence of cheating provers, as we discussed in Section 6.3, there is actually a

“small but unknown” ϵ probability that a proof is invalid, which is regarded as 0 in the

derivation of previous sections. While we may argue that the δ margin can indeed ensure

the IA properties in the presence of “sufficiently small” perturbations of prior distributions,

we still need explicit and quantitative results of distributional robustness on the relations

between δ and ϵ0 to show the practical robustness of our mechanism against dishonest

provers.

In this section, we show that the (δ,K)-compactness criterion is not only effective for

robustness against malicious players, but also for robustness against inaccurate knowledge

of prior distributions. Formally, a (δ,K)-compact CTF-PP mechanism maintains its IA

guarantees even if the actual distribution of θ has an O(δ/K) total variation (TV) distance

from the P (θ) we use in the construction of scoring rules, with a Byzantine reduction

argument that reduces inaccurate beliefs to the existence of malicious players. With this

technique, we not only show the general robustness of our design against malicious verifiers

and inaccurate priors (ϵ > 0, which represents the fraction of malicious provers), but also

show the generality of our (δ,K)-compactness criteria and Byzantine-robustness as general

conceptual guidelines of robust peer prediction mechanisms.

In the rest of this section, we refer to the TV distance when we mention the distance

between distributions.

6.6.1 Byzantine Reduction: Inaccurate Beliefs ≤ Malicious Players

Before deriving the robustness results against inaccurate priors, we first discuss the

robustness properties against inaccurate beliefs.

In the notation of Section 6.5.1, we suppose that the system has a perception of the

environmental variable as ϕ̂, while the actual environmental variable is ϕ. Assuming that the

player i observes Xi ∈ S ∪{⊥}, her posterior belief on the distribution of X−i is Bi(Xi, ϕ̂) =

P (X−i|Xi, ϕ̂). However, as the actual environmental variable ϕ is (slightly) different from ϕ̂,

the actual posterior distribution of X−i is Bi(Xi, ϕ) = P (X−i|Xi, ϕ).
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In the pairwise-scoring mechanism defined in Section 6.4.2, for the environmental variable
ϕ, the expected utility of reporting Zi when observing Xi is

rXi(Zi)− c(Xi) =
1

n− 1

∑
j ̸=i

∑
Zj∈S

P (Zj |Xi, ϕ)TZiZj − c(Xi)

 . (6.30)

Assuming that all other players are honest, i.e., Zj = Xj, from symmetry we have

rXi(Zi)− c(Xi) =
1

n− 1

∑
j ̸=i

∑
Xj∈S

P (Xj |Xi, ϕ)TZiXj − c(Xi)

 (6.31)

= P (Xj |Xi, ϕ)TZiXj − c(Xi), (6.32)

in which the j in (6.32) can be an arbitrary player different from i. Intuitively, if P (Xj|Xi, ϕ̂)

is close to P (Xj|Xi, ϕ), then even if the scoring matrix {TZiZj
} is designed for the δ-IA

property according to ϕ̂, i.e.,

∑
Xj∈S

P (Xj |Xi, ϕ̂)TZiXj − c(Xi)


≥ δ, Zi = Xi;

≤ −δ, Zi ̸= Xi.

(6.33)

the margin of δ can still make the mechanism 0-IA for the actual environment of ϕ, i.e.,

∑
Xj∈S

P (Xj |Xi, ϕ)TZiXj − c(Xi)


≥ 0, Zi = Xi;

≤ 0, Zi ̸= Xi.

(6.34)

Actually, if the scoring matrix T is (δ,K)-compact, we only need that the total variation

(TV) distance between P (Xj|Xi, ϕ̂) and P (Xj|Xi, ϕ) is bounded below Θ(δ/K). Formally,

we have:

Lemma 6.2. If Eq. (6.33) holds, max{|TZiZj
|} ≤ K, and TVXj

(P (Xj|Xi, ϕ̂), P (Xj|Xi, ϕ)) ≤
δ
2K

, then Eq. (6.34) holds.

The proof of Lemma 6.2 is deferred to Appendix D.6.8. From Lemma 6.2 we immediately

deduce the following theorem:
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Theorem 6.9. Assume that there are no rogue players in environments ϕ and ϕ̂. If a

pairwise-scoring CTF-PP mechanism is (δ,K)-compact for environment ϕ̂, and for a player

j ̸= i it holds that the total variation distance TV (P (Xj|Xi, ϕ̂), P (Xj|Xi, ϕ)) ≤ δ
2K

for every

possible observation Xi ∈ S ∪ {⊥}, then the mechanism is 0-IA for environment ϕ.

Actually, we can see that if TVXj
(P (Xj|Xi, ϕ̂), P (Xj|Xi, ϕ)) = α · δ

2K
for α ∈ [0, 1], then

the mechanism is (1 − α)δ-IA for environment ϕ, and hence according to Lemma 6.1, it is

still Byzantine-robust to (1−α) · δ
2K

(n−1) malicious players, showing that the compactness

of δ/K serves as a “reservoir” of robustness against both inaccurate beliefs and malicious

players. Intuitively, it indicates that the robustness against a ∆ fraction of malicious players

implies the robustness against a ∆ level of noise in posterior beliefs. This intuition can be

interpreted via coupling argument: if the posterior distribution is different from the belief, it

can be equivalently regarded as the players “within the total variation” reporting dishonestly.

The detailed discussion is deferred to Appendix D.3.

6.6.2 Robustness for Inaccurate Priors

In this part, we look into the effects of inaccurate prior distributions on the posterior beliefs,

and derive the robustness of our mechanism in the presence of inaccurate priors. Under

mild assumptions, we can show that an O(∆) TV distance between two different priors

is generally equivalent to an O(∆) TV distance between corresponding posterior beliefs;

hence, a (δ,K)-compact mechanism is also robust in the presence of a Θ( δ
K
) noise in prior

distributions. Formally,

Theorem 6.10. Assume that environments ϕ and ϕ̂ have no rogue players and are identical

except for different prior distributions P (θ|ϕ) ̸= P (θ|ϕ̂), and P (Xi = 1|θ ̸= 1) = 0. If a

pairwise-scoring CTF-PP mechanism is (δ,K)-compact for environment ϕ̂ and

TVθ(P (θ|ϕ), P (θ|ϕ̂)) ≤
δ

4K
· min
Xi∈S∗,φ∈{ϕ,ϕ̂}

{P (Xi|φ)} . (6.35)

then the mechanism is 0-IA for environment ϕ.
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Here, the “min” represents the minimum probability that any non-dishonest observation

(i.e., “Honest” or any flag) is observed, which is a positive constant dependent on the

verification protocol. The proof is deferred to Appendix D.6.9. From this result, we

particularly show that the incentive guarantees robustly hold when at most an ϵ0 = Θ( δ
K
)

fraction of proofs are dishonest.

6.7 Experimental Evaluation

In this section, we perform numerical experiments and compare our mechanism with existing

peer prediction mechanisms to show the effectiveness of our design.

6.7.1 Benchmarks

Elicitation environments. To evaluate the performance of our mechanism compared to

existing mechanisms, we introduce two information elicitation environments.

The first environment is “Coin” in which an unfair coin may have a type θ = h with head

probability P (Xi = H|θ = h) = 0.8 or type θ = l with head probability P (Xi = H|θ =

l) = 0.2, the principal prior is P (θ = h) = 0.4, P (θ = l) = 0.6, and the observation cost is

cH = cT = 1. This environment represents a standard scenario of information elicitation.

The second environment is Proof-of-Learning (PoL) as described in Appendix D.4 with

principal prior P (θ = 0) = 1
2
, P (θ = F1) = P (θ = F2) =

1
4
, P (θ = 1) = 0, observation matrix

as Table D.1 and observation costs c(0) = 1
3
, c(F1) = c(F2) = c(1) = 2. Here, “0” means

“valid”, “1” means “invalid” and F1, F2 stand for flags.

Player strategies. In our experiments, we consider three player strategies: “Honest”,

“Lazy”, and “Adversarial”.

In the Honest strategy, the player honestly observes and reports her observation. In the

Lazy strategy, the player does not observe and reports a type that maximizes her expected

reward among uninformed strategies. In the Adversarial (permutation) strategy, the player

observes but reports a flipped type, that is: in Coin, reporting H when observing T and

vice versa; in PoL, reporting 0 when observing 1, reporting F1 when observing F2, and vice
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versa.

Experiment schemes. We perform two experiments to evaluate the basic performance

and robustness to inaccurate priors. In the first experiment, we simulate a 2-verifier DVG

in which the principal prior is accurate, and the peer is Honest. In the second experiment,

we simulate a 2-verifier DVG in which the prior has an ϵ distance from the principal and the

peer is Honest.

Evaluation rubrics. In each experiment, we evaluate three properties of our mechanism

compared to baseline mechanisms: incentive guarantees, variance, and budget, described as

follows:

• Incentive guarantees: We want to ensure that the Honest strategy yields non-negative

utility, while the Lazy strategy (and Adversarial, if possible) yields non-positive utility.

• Variance: As real-world players are typically risk-aversive, we report the standard

deviation of players’ net utilities given they play Honestly. (This concept is also studied

by Xu et al. [179].)

• Budget: We report the expected amount of money the system needs to pay players.

To save the cost, it is preferably as little over expected verification cost as possible.

6.7.2 Baselines

To evaluate the performance of our design, we compare its incentive guarantees, variance,

and budget to the baseline mechanisms as follows. In the third experiment, we compute the

scores via pairwise average as described in Section 6.4.2.

• Simple Agreement (SA): The player is rewarded +r if her report agrees with the peer,

and −r otherwise.

• Logarithmic Scoring Rule (Log): The player is rewarded logP (X−i = Z−i|Xi = Zi)

when she reports Zi and her peer reports Z−i.

• Pointwise Mutual Information Scoring Rule (PMI): The player is rewarded

log P (X−i=Z−i,Xi=Zi)
P (X−i=Z−i)·P (Xi=Zi)

when she reports Zi and her peer reports Z−i [161].
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• DMI Mechanism (DMI): The multi-task mechanism proposed by Kong [10]. As

the DMI mechanism needs at least 2k tasks in which k is the number of different

observations, we perform the experiments with 2k and 10k tasks to show its

performance with different number of tasks.

To ensure a fair comparison, we apply an affine transformation f(x) = ax + b to the

scores of each baseline mechanism. We choose the smallest possible a (and corresponding b)

such that the incentive-alignment guarantees hold (for DMI, we do not enforce UniIC and

allow adversarial utilities to be positive), thereby giving each baseline the best opportunity

to minimize variance and budget.10 Furthermore, in the experiment for inaccurate priors,

we assume that the accurate prior is known by the system for all baselines (but not in our

design), and is the same across all tasks for the DMI baseline. While these assumptions

may not be realistic, we are allowing these baselines to operate under their most favorable

conditions.

6.7.3 Experiment Results

In this section, we show the results of the first experiment (accurate prior, honest peer) in

Tables 6.3-6.4, and defer the second to Appendix D.5.

In the Coin benchmark, we show that if we do not enforce a δ margin, our mechanism

achieves optimal budget that equals the observation cost, and also achieves the smallest

variance among all listed mechanisms, showing that our objective of magnitude minimization

also implicitly minimizes the variance as it is upper bounded by the magnitude of scores.

On the other hand, the PMI mechanism is the most competitive among all the baselines.

Meanwhile, the DMI mechanism, though achieving desirable budget and prior-free incentive

compatibility, has the worst variance and significantly worse compactness (robustness) than

our mechanism under the same δ and budget. Furthermore, even though we enforce a δ

margin for honest and lazy strategies, its inherent non-permutation-proof property renders
10In the multi-task DMI mechanism, the “budget” we report is the budget per task and the “variance” is

divided by
√
T in which T is the number of tasks. If we run a single-task mechanism T times, the standard

deviation of total utility is
√
T times the standard deviation for a single task. Hence, we divide the standard

deviation by
√
T for fair comparison.
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Table 6.3: Experiment Results for Coin Benchmark

Budget Variance Compactness Honest Utility Lazy Utility Adversarial Utility
Ours (δ = 0) 1.00 2.87 0.000 0.00 0.00 −2.13

Ours (δ = 0.2) 1.20 3.92 0.038 0.20 −0.20 −2.69
SA 1.57 6.11 0.000 0.57 0.00 −4.18
Log 1.38 4.26 0.000 0.38 0.00 −2.65
PMI 1.12 3.29 0.000 0.12 0.00 −2.37

DMI (2k, δ = 0) 1.00 18.47 0.000 0.00 0.00 0.00

DMI (2k, δ = 0.2) 1.20 25.86 0.001 0.20 −0.20 0.20
DMI (10k, δ = 0) 1.00 6.78 0.000 0.00 0.00 0.00

Table 6.4: Experiment Results for PoL Benchmark

Budget Variance Compactness Honest Utility Lazy Utility Adversarial Utility
Ours (δ = 0) 0.75 2.56 0.000 0.00 0.00 −2.85

Ours (δ = 0.2) 0.95 3.65 0.027 0.20 −0.20 −3.30
SA (Infeasible)
Log 4.94 23.06 0.000 4.19 0.00 −∞
PMI 1.25 3.84 0.000 0.50 0.00 −∞
DMI (Infeasible)

it subject to adversarial reports. Hence, our mechanism achieves better performance than

the DMI mechanism in the standard setting.

The results for the PoL benchmarks are similar, in which the PMI mechanism is also

the most competitive among all the baselines. Nevertheless, the DMI mechanism does not

work in the case of ϵ = 0 (no cheating provers) as the reward is always zero. Particularly,

the DMI mechanism requires a full-rank “answer matrix” to distribute non-zero rewards, so

the verifiers’ rewards would be zero unless at least one of the tasks are done by a cheating

prover, whether or not “flags” are adopted. Hence, it only rewards the verifiers when cheats

are detected, similar to opML [130], which is not robust for ϵ → 0 and fails to resolve the

Verifier’s Dilemma.

6.8 Discussion

In this paper, we develop a theoretical framework for the decentralized verification game

on decentralized validation protocols and get theoretical results to robustly resolve the

Verifier’s Dilemma in a fully decentralized environment, potentially reinforcing the backbone

of decentralized AI incentive systems. On the other hand, we also explore the design of peer
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prediction mechanisms with broader agent strategy spaces and more general settings and

dive into its robustness issue. In future work, we will improve and broaden the study in the

following aspects:

1. Although the PoW/PoS protocols minimize the influence of Sybil attacks, they do not

eliminate them completely. In our future work, we will look into more precise economic

models w.r.t. PoW/PoS protocols and discuss the resilience against Sybil attacks of

our mechanisms.

2. While this paper is mainly on the elicitation of truthful verification results, we will also

develop back-end voting/aggregation mechanisms that (optimally) make decisions on

whether to accept the proof.

3. Beside the applications of blockchain and decentralized verification games, we will

explore broader scopes of potential applications of Byzantine-robust peer prediction

for decentralized consensus (e.g. Ethereum slashing), and human feedback elicitation

for RLHF and AI model training/inference.
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CHAPTER 7

CONCLUSION: FOR THOSE WHO COME AFTER

In this thesis, I studied the problem of incentive design for a wide scope of digital economic

platforms, from traditional ridesharing platforms to the futuristic vision of decentralized AI.

In all of the parts, despite diverse technical contributions, they are all motivated by the

same societal objective: to maintain reliability (running as expected even under complicated

real-world environments) and sustainability (achieving long-term socially desirable outcomes

when working as expected), while also keeping the revenue for the principals who deploy the

mechanisms.

For future research directions, I am actively looking at the following scopes, to broaden

the fields of my research’s real-world applications:

• Mechanism design for risk-averse players: While most standard game-theoretical

studies assume linear utility functions, i.e., risk-neutral players, in the real world most

people are actually risk-averse, particularly in current years of declining economy. By

considering such non-linear utility models, like Zhang et al. [180], we may fit theoretical

studies better into practical use.

• Bad-luck prevention in collusion-proofness: Most studies on collusion-proof mechanism

design depend on the assumption that colluders take up a small fraction of current

participants, but in the real decentralized world, e.g., the PoS protocol in Ethereum, the

participants are usually random drawn from a latent pool, and in tail cases the current

“committee” may contain substantially more colluders than expectation, leading to

occasional vulnerabilities in the system. To address the issue, we may add certain

disputing mechanisms in which honest participants may pay some cost to reroll a

new committee in such cases, and design proper incentives to make sure only honest
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participants would be incentivized to dispute, like my working project of [181]. In this

way, we can transform the assumption on honest majority in committees into honest

majority in pools, reinforcing the security in real-world environments.

• Scaffolding decentralization: While decentralized AI has great potential to address

reliability and safety issues in AI development, we need to admit the current

monopolizing power in centralized ecosystems. To make my study immediately

benefit the society before the maturity of decentralized AI ecosystems, I am actively

working on AI systems that are still partially centralized, but capture some conceptual

essence in decentralized AI, such as incentive-compatible crowdsourcing, like my current

working project [182]. The future is not built in a day, hence we need to build a smooth

path towards it.

When conducting all these research topics, I have kept thinking over the question: There

are so many applications for mechanism design, but what kind of topics are most valuable?

What should be the ultimate objective, to do mechanism design?

• To benefit the entire society at large?

• Or to benefit the principal who deploys the mechanism?

• Or to benefit yourself, the person who designs the mechanism?

In an ideal world, I believe the first objective should take precedence: those who design

the rules of society should ideally target social welfare. However, a critical issue remains: the

principal is also a strategic player. If one manages to design a perfectly fair mechanism that

achieves societal optimality, yet an alternative mechanism offers the principal a competitive

advantage (albeit unfair), a rational principal is likely to choose the latter. In such a scenario,

the altruistic mechanism designer would find their work unimplemented, unable to contribute

to the society they aim to serve. Hence, to achieve tangible impact in the real world, even the

most altruistic and omniscient mechanism designer must incorporate the principal’s selfish

incentives into consideration, ensuring that social welfare is optimized within the constraints

of adoption.
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At the time I am finishing this thesis, I am facing a critical stage of my life—PhD

graduation. I have always been enjoying my research with the starry-eyed passion to change

the world with my designs: to make even the most selfish people behave in a way that

benefits the society, wishing to finally resolve the Prisoner’s Dilemma that makes people

fight against each other in disguise of “rationality”. That would certainly be the most exciting

and fulfilling achievement of my PhD.

Yet, I am frequently asked: “You have done brilliant work, but why choose these topics

over trending ones that might secure a more prestigious position or higher compensation?”

This question reveals why many researchers follow the hype: the mechanism designer is also

a strategic player. If a mechanism cannot earn sufficient rewards for its designer, it is likely

never to be designed at all.

Hence, an altruistic and omniscient mechanism designer may only consider the first two

objectives; nevertheless, if you are altruistic but not omniscient, then you need to consider

the third, because working on a mechanism that does not benefit the designer will not attract

others to join you, and it will be significantly harder to do these work all on your own, unless

you are omniscient.

Hence, an ultimate objective of mechanism design, should be balancing the three. A PhD

degree may already show that I am a reliable mechanism designer. After graduation, I should

strive to remain sustainable as well.

The handwritten dedication at the beginning of this thesis translates to “keep on loving

you”.

One essential thing is being able to love; the other is, being able to keep on.
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APPENDIX A

APPENDIX FOR CHAPTER 3

A.1 Omitted Proofs

A.1.1 Proof of Theorem 3.2

Proof. In this proof, we set all costs to be zero, so the reward is equivalent to the revenue.

We notice that even for states that are not adjacent, the reward function r(n; e(w)
s,s′) is still

well-defined if for all states t on a path from s to s′, all drivers visiting t must visit s before

and visit s′ after. In this concept, we can regard it as a “virtual arc” as long as they do

not intervene with each other. Then, we reduce Set Cover [183] to Maximum Revenue Car

Dispatching.

Lemma A.1. For n,A ∈ N, n ≥ 1, we can construct an arc (s, s′) in polynomial time and

size with r(x; e(w)
s,s′) = A · 1x≥n +C1 for x ∈ [n], in which C1 is a constant only dependent on

A and n.

Proof of Lemma A.1. We create an arc (s, s′) with n orders of valuation
n−1
1
A, n−1

2
A, · · · , n−1

n−1
A,A. Then it satisfies the condition with C1 = A · (n − 1).

Q.E.D.

Lemma A.2. For n,A ∈ N, n ≥ 1, we can construct a virtual arc (s, s′) in polynomial time

and size with r(x+ (n− 1); e
(w)
s,s′) = A ·max{0, x− 1}+ C2 for 0 ≤ x ≤ n, in which C2 is a

constant only dependent on A and n. We call it a (A, n)-virtual arc.

Proof of Lemma A.2. For each i ∈ [n−1], we construct an arc (s, si) with r(x+(n−1); e(w)
s,si) =

A(i · 1xi≥i+2+C
(i)
1 ) for xi > 0 by Lemma A.1, and an arc (si, s

′) with no reward. Then, as it
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is straightforward to see i · 1xi≥i+1 ≤ xi− 1− 1xi≥2 for xi > 0 and C(i)
1 − 1 = i(i+1)− 1 > 0

for xi = 0, we always have

r
(
xi; e

(w)
s,si

)
≤ A(xi − 1− 1xi≥2 + C

(i)
1 ).

Therefore,

r

(
n−1∑
i=1

xi; e
(w)
s,s′

)
=

n−1∑
i=1

r(xi; e
(w)
s,si

)

≤ A
n−1∑
i=1

(xi − 1− 1xi≥2 + C
(i)
1 )

= A

(
n−1∑
i=1

xi − (n− 1)−
n−1∑
i=1

1xi≥2 +
n−1∑
i=1

C
(i)
1

)
.

We let x =
∑n−1

i=1 xi − (n− 1), C2 = A
∑n−1

i=1 C
(i)
1 , and notice that

∑n−1
i=1 1xi≥2 ≥ 1x≥1. Then

we get:

r(x+ (n− 1); e
(w)
s,s′)

≤ A(x− 1x≥1) + C2

= A ·max{0, x− 1}+ C2, 0 ≤ x ≤ n.

When we let xi = 1 + x · 1i=x−1, the equality holds. Q.E.D.

Now consider an instance of the set cover problem with the set A = {a1, · · · , an}, a

family K = {K1, · · · , Km} of subsets of A. Now we construct the Maximum Revenue Car

Dispatching problem with S = A ∪K ∪ {O}. In the initiation, on each ai ∈ A we assign 1

driver, and for each Kj ∈ K , we assign |Kj| − 1 drivers. Then, for each ai ∈ Kj, we add an

edge (ai, Kj) with one order of valuation 1, and for each Kj, we add an (1, |Kj|)-virtual arc

(Kj, O) as in Lemma A.2, with the respective C2 denoted as C(j). Then, the drivers initially

in Kj will go straight to O getting C(j) reward, for a total of C3 :=
∑m

j=1C(j).

Now we consider the routes of drivers initially in A. Each order from A to K earns 1,

and the reward from any Kj to O is non-decreasing, so in an optimal plan all drivers must
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reach O, and all nodes in K visited by some drivers from A form a set cover of A. For each

fixed Kj, if x ≥ 1 drivers from A visit Kj, the virtual arc (Kj, O) will earn an additional

reward of x− 1. Therefore, if totally k nodes in K are visited, the total revenue is:

2n+ C3 − k.

Therefore, if we can compute the optimal plan for this instance of Maximum Revenue Car

Dispatching, we find the optimal solution to Set Cover, so there is no polynomial time

algorithm for general Maximum Revenue Car Dispatching unless P = NP. Q.E.D.

A.1.2 Proof of Lemma 3.1

Proof. We firstly prove the “only if” direction, i.e. a reward re-allocation is fair only if there

exists a potential function satisfying the condition (1-4):

We assume that the plan P is fair. Because P is envy-free, for every driver who visits

the same state s, their utility obtained from s to the end must be the same, and we denote

it as P (s). We only consider states visited by at least one driver. For all s not visited by

any driver, we assign P (s) = 0.

In condition 3, let d be a driver who drives through the arc (s, s′). By construction rule of

P , the utility of d from s to the end is P (s) and the utility of d from s′ to the end is P (s′), so

the net income of d driving from s to s′ must be P (s)−P (s′). According to the non-negative

producer surplus requirement in fair re-allocation, P (s)− P (s′) ≥ 0. So condition 3 holds.

If condition 2 is violated, then from condition 3 we know that F (s, s′) = 0. Then, for any

driver at s, when he/she deviates the route and drives to s′ instead, he/she will benefit from

the deviation. Contradiction. So condition 2 holds.

In condition 1, we consider a driver d leaving the platform at s, then d will not earn any

net income further. By construction rule of P we know P (s) = 0.

In condition 4, the LHS is the summation of total net income of all drivers and the RHS

is the summation of revenue of the platform, so it is equivalent to budget-balance condition.

Therefore condition 4 holds.
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In conclusion, we can construct a potential function P from any fair reward re-allocation.

Then we prove the “if” direction, i.e. a reward re-allocation is fair if there exists a potential

function satisfying the condition (1-4):

If a re-allocation scheme is not fair, then at least one of budget-balance, non-negative

producer surplus, subgame-perfectness and envy-freeness is violated. We assume there still

exists a potential function P satisfying all conditions.

If envy-freeness is violated, then there must exist a state s such that two drivers earn

different net incomes from s to the end. By condition 3, all drivers at state s earn a net

income of P (s) from s until he/she leaves the platform if he/she follows the dispatching plan.

Contradiction.

If subgame-perfectness is violated, then there must be a state s where a driver may deviate

and improve his/her utility. Then condition 2 is violated. Contradiction.

If budget-balance is violated, then condition 4 is violated. Contradiction.

If non-negative producer surplus is violated, then the “≥ 0” constraint in condition 3 is

violated. Contradiction.

In conclusion, if a re-allocation is not fair, such P satisfying all conditions does not exist.

Q.E.D.

A.2 Approximate NLWC Algorithm for Non-regular Cases

To make the edge reward function concave, we essentially construct the concave envelope of

r(·; e(w)
s,s′), as the least-valued concave function r(·; e(w)

s,s′) not less than it. To compute r(·; e(w)
s,s′),

we only need to solve a linear program with decision variables {r(i; e(w)
s,s′)}i∈[o(s,s′)]:
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Minimize
o(s,s′)∑
i=1

r(i; e
(w)
s,s′)

Subject to r(i; e
(w)
s,s′) ≥ r(i; e

(w)
s,s′), ∀i ∈ [o(s, s′)] (A.1)

2r(i; e
(w)
s,s′) ≥ r(i− 1; e

(w)
s,s′) + r(i+ 1; e

(w)
s,s′), (A.2)

i = 2, · · · , o(s, s′)− 1.

Then, in Line 7 of Algorithm A1, we compute w with r instead, thus making w

non-increasing and getting an approximated regular NLWC instance for computation of

approximated Maximum Revenue Car Dispatching.

A.3 An Example for Merit of Two-Phase Pricing

Through Wuhan City runs the Yangtze River, across which there had been only two bridges

in 2000s. During rush hour, people traveling across the river crowded the bridges and made

the traffic extremely heavy. As taxis would struggle in crossing the river, which would take a

long time and increase both fuel and opportunity costs, taxi drivers frequently refused trips

and made citizens complain.1

Consider three locations W1,W2, H, in which W1,W2 are far apart but both in Wuchang

on the same side of the river, while H is just opposite to W1 across the No.2 Yangtze

Bridge in Hankou. By the taxi pricing system, the fare from W1 to W2 is p(W1,W2) = 20,

while p(W1, H) = 10. However, due to distinct traffic conditions, the costs are c(W1,W2) =

10, c(W1, H) = 8. As p(W1,W2)− c(W1,W2) > p(W1, H)− c(W1, H), taxi drivers would not

be willing to cross the river.

Suppose there were two riders who would travel from W1 to W2 and H, respectively, with

valuations the same as taxi fares. In the conventional mechanism, two drivers would take

one order each, but one earns 10 while the other earns only 2, making the latter complain

or even refuse the trip. If we enforce envy-freeness, as we cannot increase the p(W1, H)

1See https://www.wsj.com/articles/SB10001424052702303330
204579247731532836694
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(otherwise the price exceeds the rider’s valuation and the rider would not take the trip), we

can only lower p(W1,W2) to 12, which just lowers the revenue and makes drivers equally

unsatisfied.

In our two-phase pricing mechanism, we can compute the potentials P (W1) = 6, P (W2) =

P (H) = 0. Therefore, r(W1,W2) = 16, r(W1, H) = 14, so no matter which trip they choose,

they always earn 6. This kind of redistribution has not been possible until ridesharing

platforms occur, but does make drivers envy-free and alleviate the problem that drivers

are not willing to cross the river (and other situations of heavy traffic) without modifying

rider-side pricing or total revenue, improving both parties’ experience.

A.4 Computing the Reward Functions for the Gaussian-Poisson
Demand Distribution

A.4.1 The Gaussian-Poisson Demand Distribution.

In literature on pricing under stochastic demands, it is common to model the stochastic

arrivals as Poisson processes [184, 185, 186, 187], and assume that the agents’ undisclosed

valuations of follow the normal distribution [184, 188]. In light of this, we define the

parametric Gaussian-Poisson distribution for D(s, s′), which is both practically useful

and easy to learn. If D(s, s′) is the Gaussian-Poisson distribution with parameters

(µs,s′ , σs,s′ , λs,s′), we have that xs,s′ ∼ Pois(λs,s′) and each vt ∼ N (µs,s′ , σ
2
s,s′), where Pois(λ)

and N (µ, σ2) respectively denote the Poisson and the Gaussian distribution.

For parametrization of the demand distribution, in our experiments in stochastic setting

and online learning setting, we assume the latent orders obey Gaussian-Poisson distribution.

A.4.2 Computation of Reward Functions

Fix any arc (s, s′) and the distribution parameters (µs,s′ , σs,s′ , λs,s′). Denote Φ(·) as the

cumulative distribution function (cdf) of standard Gaussian distribution. If we offer a price

p, since valuations of the latent orders on the arc obey N (µs,s′ , σ
2
s,s′), each latent order has
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a valuation greater than p independently with probability (1−Φ(
p−µs,s′

σs,s′
)). For convenience,

we also refer to these orders as qualified.

The following lemma characterizes the number of the qualified orders on the given arc.

Lemma A.3. Let x̃(p) denote the the number of the qualified orders on the arc (s, s′). x̃(p)

follows Pois(λ̃(p; s, s′)) where

λ̃(p; s, s′) :=

(
1− Φ(

p− µs,s′

σs,s′
)

)
λs,s′ .

Proof. We equivalently prove the following statement: for x ∼ Pois(λ) we toss x coins each

with head probability p, then the number of heads of all coins tossed obeys distribution

Pois(λp).

The probability generating function of Pois(λ) is

G1(t) =
+∞∑
i=0

e−λλ
i

i!

= eλ(t−1).

(A.3)

For every coin the probability generating function of the number of heads is

G2(t) = (1− p) + pt. (A.4)

Then the probability generating function of the total number of tails is

G1(G2(t)) = eλ((1−p+pt)−1)

= eλp(t−1),
(A.5)

identical to the probability generating function of Pois(λp).

Therefore, the number of heads obeys the distribution Pois(λp). Q.E.D.

For λ̃ = λ̃(p; s, s′), we define the function

Θ(n, λ̃) := n−
n−1∑
i=0

(n− i) λ̃
i

i!
e−λ̃.
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We have that Θ(n, λ̃) is the expected number of the fulfilled orders on the arc if we dispatch

n drivers. This is because the expected number of fulfilled orders is

∞∑
i=0

min{n, i} · Pr[x̃(p) = i]

=
∞∑
i=0

(n · Pr[x̃(p) = i])−
n−1∑
i=0

((n− i) · Pr[x̃(p) = i])

= n−
n−1∑
i=0

(n− i) λ̃
i

i!
e−λ̃ = Θ(n, λ̃).

Finally, we use the functions defined above to compute R(n, p; s, s′), and derive the

calculation methods for the edge reward function r(·; e(w)
s,s′) as follows.

Theorem A.1. If D(s, s′) follows the Gaussian-Poisson distribution with parameters

(µs,s′ , σs,s′ , λs,s′), then

r(i; e
(w)
s,s′) = max

p∈R≥0

{
Θ
(
i, λ̃(p; s, s′)

)
p
}
− c(s, s′)i. (A.6)

A.5 Our Online Learning Algorithm

When the distributions {D(s, s′)} of the latent orders are not known beforehand, our

scheduling algorithm needs to actively collect data and learn these distributions with better

accuracy while pursuing higher revenue. Note that a key component of D(s, s′) is the riders’

valuation distribution on each arc. The scheduling algorithm has to learn the distribution

from the partial information that whether a rider has accepted the proposed price on the

arc. On the other hand, the amount of partial information revealed about the valuation

distribution critically depends on the scheduling algorithm’s pricing strategy, as a too high

or too low price would result in the riders always accepting or rejecting the offer, which is

little useful information. Therefore, the learning-and-optimization algorithm has to carefully

price the arcs to balance the two goals of obtaining enough information and securing high

revenue. This is also known as the exploration vs. exploitation dilemma in online learning

and decision-making.
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A.5.1 The Thompson Sampling Framework

To address this challenge, we adopt Thompson sampling (TS), a general online learning

and decision-making algorithmic design principle that dates back to [189] and proves to be

useful in many practical tasks (e.g., [190, 191, 192]). Suppose that the scheduling algorithm

will run for a time horizon of T days, and each day forms an independent scheduling

task with the identical distributions {D(s, s′)}. The scheduling algorithm on day τ may

use the information observed during the first (τ − 1) days to learn {D(s, s′)}, and has

to make scheduling decisions for day τ , generating revenue as well as new data for future

learning. The TS framework usually works with parametric distributions (where we assumed

that {D(s, s′)} are Gaussian-Poisson distributions with parameters {(µs,s′ , σs,s′ , λs,s′)}),

and maintain a prior distribution for the parameters. On each day τ , TS samples the

parameters {(µ̂(τ)
s,s′ , σ̂

(τ)
s,s′)} (λ̂(τ)s,s′ can be obtained from direct estimation as it is not involved

in the exploration-exploitation dilemma) from the prior and correspondingly constructs the

estimation {D̂ (τ)(s, s′)}. An optimal scheduling policy is computed based on {D̂ (τ)(s, s′)}

and the riders’ responses (accept or reject) are observed. The TS algorithm then computes

the posterior distribution for the parameters based on the new observation, which also serves

as the prior on the next day.

A.5.2 Gaussian Priors and Laplace Approximation

A key choice we have to make in designing the TS algorithm is the specific form of the prior

distributions that should simultaneously guarantee the learning performance and facilitate

the posterior calculation. In our algorithm, we set the prior distributions for both µs,s′ and

σs,s′ to be independent Gaussian distributions:

µs,s′ ∼ N (µµ
s,s′ , (σ

µ
s,s′)

2), σs,s′ ∼ N (µσ
s,s′ , (σ

σ
s,s′)

2),

where µµ
s,s′ , σ

µ
s,s′ , µσ

s,s′ , σσ
s,s′ can be estimated based on the intrinsic properties of the trip

(s, s′) (e.g., length, tolls, road quality, etc) without any interaction with the riders.

However, even with the above assumption, the posterior distributions of µs,s′ and σs,s′
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may become a complicated form other than Gaussian, which may lead to further description

and computational complexity as the algorithm runs after multiple days. To address

this challenge, we adopt the Laplace’s method to approximate the potentially complicated

posterior by another Gaussian distribution. Such a Laplace approximation method, first

proposed by Chapelle and Li [190], is able to maintain the conjugacy properties for the priors

and therefore greatly facilitates the computation. The detailed approximation procedure is

derived in Appendix A.6.

A.5.3 Algorithm Description

In Algorithm 6, we describe the details of our TS algorithm. At Line 5, the λs,s′ parameter

is not involved in the exploration-exploitation dilemma and therefore is learned directly via

the maximum likelihood estimate. At Line 7, the approximate Gaussian posterior is done

via the Laplace’s method.

Algorithm 6 TS for Maximum Revenue Car Dispatching
1: for each (s, s′) ∈ Q: initialize

(µ
µ,(1)
s,s′ , σ

µ,(1)
s,s′ , µ

σ,(1)
s,s′ , σ

σ,(1)
s,s′ )← (µµ

s,s′ , σ
µ
s,s′ , µ

σ
s,s′ , σ

σ
s,s′).

2: for τ ← 1, 2, . . . ,T do
3: for (s, s′) ∈ Q do
4: Sample µ̂(τ)

s,s′ ∼ N (µ
µ,(τ)
s,s′ , (σ

µ,(τ)
s,s′ )2), σ̂

(τ)
s,s′ ∼ N (µ

σ,(τ)
s,s′ , (σ

σ,(τ)
s,s′ )2).

5: Estimate λ̂(τ)s,s′ as the daily average of the number of the latent orders on (s, s′).
6: Compute the optimal Stochastic Maximum Revenue Car Dispatching

(Definition 6) plan for the Gaussian-Poisson demand distribution with parameters
{(µ̂(τ)

s,s′ , σ̂
(τ)
s,s′ , λ̂

(τ)
s,s′)}s,s′ , and execute the plan on day τ .

7: Observe the riders’ responses and compute the parameters for the approximate
Gaussian posterior {(µµ,(τ+1)

s,s′ , σ
µ,(τ+1)
s,s′ , µ

σ,(τ+1)
s,s′ , σ

σ,(τ+1)
s,s′ )}s,s′ .
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A.6 Laplace Approximation for Posterior Computation in the
Thompson Sampling Algorithm

At the end of day τ , for each arc (s, s′), suppose {pi, yi}i∈n(τ)

s,s′
is the set of prices and rider

responses on the arc in history. We compute the likelihood function

L (µ, σ) = ϕ

(
µ− µµ

s,s′

σµ
s,s′

)
ϕ

(
σ − µσ

s,s′

σσ
s,s′

)∏
i

L

(
pi − µ

σ
, yi

)
,

where ϕ(·) is the probability density function (pdf) of the standard Gaussian and L(x, y) :=Φ(x), y = 0

1− Φ(x), y = 1
.

We adopt the Laplace approximation method for multi-variate likelihood [193] to

approximate L by a product of Gaussian distributions of µ and σ. We firstly find the

mode of log L :

(µ̃µ, µ̃σ) = arg max log L (µ, σ).

Then we use the symmetric difference quotient method [194] to compute the numerical

Hessian of log L (µ, σ) at (µ̃µ, µ̃σ) as

H =

H11 H12

H21 H22

 =

∂2 log L
∂µ2

∂2 log L
∂µ∂σ

∂2 log L
∂µ∂σ

∂2 log L
∂σ2

∣∣∣∣∣∣
(µ,σ)=(µ̃µ,µ̃σ)

.

Finally, we set µµ,(τ+1)
s,s′ = µ̃µ, µσ,(τ+1)

s,s′ = µ̃σ, and σ
µ,(τ+1)
s,s′ =

√
−H−1

11 , σσ,(τ+1)
s,s′ =

√
−H−1

22 as

the parameters for the approximate Gaussian posterior on day τ , as well as the Gaussian

prior on day (τ + 1). Note that H is a negative semi-definite matrix and therefore both

−H11 and −H22 are non-negative.
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A.7 Additional Experiments

A.7.1 Regularity of the Gaussian-Poisson Distribution

In this part, we perform numerical experiments to show that the edge reward function is

concave for Gaussian-Poisson distributions. Without loss of generality we can set µ = 1 (up

to normalization). We then choose different (σ, λ) and verify the convexity of edge reward

function. We have made a 330 × 330 grid for σ ∈ [0, 1.5] and λ ∈ [0, 33], and verified that

at all grid points observe the regularity condition. The range of this grid covers the data

appearing in the dataset of Section 3.6 and the resolution is fine, so it empirically verifies

the regularity of the Gaussian-Poisson distribution.

In Figure A.1, we plot the marginal rewards v′k with µ = 1 and a few representative σ and

λ values. It is easy to see that all curves are monotonically non-increasing with k.

A.7.2 Experiments for online learning

Online Setting. When the model parameters are not known before hand, we run our online

learning algorithm (in Section A.5) for 50 days. We refer to the revenue of the algorithm

as the Thompson Sampling value (TS). We also introduce the baseline exploration-and-

exploitation (EE), another common strategy in online learning. In the first 19 days, EE
performs exploration where the prices are chosen uniformly in a pre-defined interval, and on

day 20 we learn the model parameters using the first 19-day data, then compute the optimal

plan based on the learned parameters for the rest of days.

A.7.3 Results (Online)

We present the learning curves (the revenue collected on each day) of the online methods

in Figure A.2. In the figure, we also plot OV for reference. We see that TS approaches

the target OV much faster than EE.2 For each online algorithm A ∈ {TS,EE}, we define its
2To reduce the computational burden, we only update the policy for TS in a subset of the 50 days, which

results in the observable non-smoothness of the learning curve. If the policy were updated everyday, the
performance would be slightly better.
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Figure A.1: Marginal rewards v′k with different parameters.

average regret to be Reg(A) := 1
50

∑50
i=1(OV− A(i)), where A(i) denotes the revenue of A on

day i. Reg(A) is a standard metric in online learning that measures the average price paid

by A on each day to learn and approach the target OV. We report that Reg(TS) = 1.29×104

and Reg(EE) = 3.38× 104. Our TS algorithm incurs a much smaller regret than the baseline

EE.

Robustness. To evaluate the generalization ability of our algorithm, we modify the

following two key parameters in experiments: the number of drivers and the standard

deviations of the riders’ valuations. We report the experimental results showing that our

algorithms still perform well under these different experimental environments.

In Table A.1, we modify the number of drivers. In the 50% drivers setting we remove each

driver from the system with 50% independent probability and in the 200% drivers setting

162



0 10 20 30 40 50
Days

3

4

5

6

7

8

9

R
ev

en
ue

104

OV
EE
TS

Figure A.2: Comparison of learning curves

we duplicate every driver. In Table A.2, we modify the variations of the riders’ valuations.

Compared to the original dataset, we modify the standard deviations of valuations by 0.5 and

1.5 times respectively. We see that in all settings, our TS algorithm consistently performs

better than other baselines.

For EE and TS, we present the revenue on the 50th day (Rev) and average regrets (Reg)

during the period. Learning curves of experiments with modified parameters are shown in

Figures A.3-A.6.

A.7.4 An Illustrative Example for Fair Re-allocation

In this part, we show the properties of fair re-allocation for running the Phase 2 algorithm

on DiDi dataset in the deterministic setting. Due to the large size of the dataset, we draw

a representative subset of the whole dataset to show its behavior, and impose the budget-

balance constraint on this subset instead of the whole dataset of rides.

In this example, we consider four positions in Chengdu city in China. Position A is the

South Railway Station of Chengdu; position B is Tianfu Square, the leisure and business
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Table A.1: Rev/Reg with different numbers of drivers (×104).

#drivers 6655 13411 26822
Rev Reg Rev Reg Rev Reg

OV 6.82 – 9.32 – 11.17 –
FP 5.54 – 7.56 – 9.02 –
EE 5.88 2.47 7.88 3.38 9.27 4.14
TS 6.40 0.87 8.64 1.29 10.25 1.65

Table A.2: Rev/Reg with modified standard deviations (×104).

stddev 0.5σ 1.0σ 1.5σ
Rev Reg Rev Reg Rev Reg

OV 10.36 – 9.32 – 8.61 –
FP 7.90 – 7.56 – 7.25 –
EE 8.41 4.11 7.88 3.38 7.45 2.90
TS 9.49 1.72 8.64 1.29 7.98 1.11

center located in the center of Chengdu; positions C and D are in two residential districts

(Shuangqiaozi and Caojia Alley respectively). We then consider the traces of 10 drivers

initiating from C, and three consecutive time stamps 1, 2, 3 representing the time period

of 8:00am to 8:45am. The trip from each position to another takes one time step, but as

position A is relatively far from the cluster of {B,C,D}, trips to or from A typically earn

more revenues. Figure A.7 shows the numbers of rides and net incomes of each arc from the

Maximum Revenue Car Dispatching algorithm.

On the riders’ side, riders traveling from or to A are not expected to complain about

higher prices, because they do have longer trips. However when it comes to drivers, they

may prefer to take longer rides from or to A than traveling among B,C,D. Particularly,

one driver J1 is assigned the trip C → A→ D and gains a net income of 6.76, and another

driver J2 is assigned the trip C → D → D and gains a net income of 3.71. Then, J2 may

envy J1 for earning more merely because assigned a “better” route.

In the same example, after we run the re-allocation algorithm, we re-allocate the money

collected from riders to drivers, so that the net utilities for drivers of rides are shown in

Figure A.8. In this way, no matter which route is assigned, a driver always gets a total net

income of 4.81 (ignoring rounding errors) within the same total budget, and they cannot

improve their net income by deviation, so fairness among drivers are guaranteed while the
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Figure A.3: Learning curves with 200% drivers.
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Figure A.4: Learning curves with 50% drivers.

total revenue is still optimized.

A.7.5 A simple analysis for influence of number of drivers on unfairness
without re-allocation

In fairness evaluation of our experiments, we notice that without the re-allocation phase,

the relative unfairness increases with numbers of drivers. Intuitively, when there is only one

driver, he/she would just pick the most profitable route; when more drivers join in, if they

all choose to pick the most profitable routes for themselves, there may not be enough latent
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Figure A.5: Learning curves with 150% standard deviations of valuations.
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Figure A.6: Learning curves with 50% standard deviations of valuations.

orders for all the routes, and some drivers would have to drive through sub-optimal routes

for their income. This phenomenon increases with the number of drivers, which leads to the

increase of relative unfairness.

As an simple example, when there are only 5 latent orders from A to B,C,D,E, F ,

with profits 10, 9, 8, 7, 6 respectively. When there are 2 drivers initially at A, they will be

dispatched with A → B and A → C trips, and their profits are 10 and 9, so the relative

unfairness is 0.053. If there are 5 drivers instead, then all trips will be taken and there is a

wider spread in profits of individual drivers, and the relative unfairness is 0.177.

However, although it is the general tendency, the relative unfairness is not guaranteed to
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  Figure A.7: Rider-side pricing for the example in Appendix A.7.4
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Figure A.8: Driver-side re-allocation for the example in Appendix A.7.4

monotonically increase with the number of drivers. Consider an example in which there are

also 45 latent orders from A to G with profit 2, then the relative unfairness for 25 drivers is

0.776 while the relative unfairness for 50 drivers is 0.713. This phenomenon occurs because

in the case of 50 drivers, most drivers can only get the same low profit, so it becomes “less

unfair” than the case of 25 drivers.
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APPENDIX B

APPENDIX FOR CHAPTER 4

B.1 Cryptographic Protocols for On-Chain Implementation

Ideally, to design a credible blockchain TFM, we seek to discourage all kinds of dishonest

behavior by either systematically preventing them from being conducted, or economically

discouraging them by making them non-profitable.

Fortunately, the transparency property of a blockchain [195] and its implementation of

many cryptographic protocols [196] have already helped prevent several types of dishonest

behaviors. For example, since the blockchain is public, it is not possible for the miner to

behave in a Byzantine manner via commuting different bidding vectors to different users (see

the discussion in [39]), and the slashing rule in the Ethereum blockchain also discourage the

miner from conducting certain classes of dishonest behavior via monetary penalties [197].

Also, [39] propose to adopt a secure commitment scheme, which uses cryptographic

protocols to guarantee that a bid cannot be modified after proposal. This scheme has

the following advantages:

1. It restricts the strategy space of the miner to merely adding fake transactions and

concealing transactions, ruling out strategies for the miner to collude with users and

change existing bids.

2. It implements a sealed-bidding auction format that not only makes the Bayesian game

modeling valid but also guarantees fairness among users’ information sets, restricting

users’ strategy space and preventing the MEV issue in which the miners strategically

manipulate transaction orders to increase their utility.
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Remark 1. while we only need to prevent individual user deviations in the interim setting,

for c-SCP and MIC properties we want a stronger ex-post version.

Particularly, we can implement the commitment scheme in the way as follows:

1. Users submit the (salted) hash values of their transactions.

2. The miner packs and broadcasts all the hash values of the transactions that compete

for the block, following by a hash value of the all packed hash values.

3. The users reveal their transactions and the miner uploads them. If the uploaded

transactions deviates from the hash values too much (∆ ≥ ϵ3n for a pre-set ϵ3 ∈ (0, 1),

with ∆ defined in Section 4.7.1), the miner is penalized.

4. The system processes the TFM.

For the miner-only deviation, the miner may behave dishonestly in Steps 1-3, and the

number of deviations can be restricted in the way as follows:

1. The miner may submit fake transactions in Step 1, without seeing the honest

transactions (interim M-FT). The system can restrict the number of transactions

proposed by an identity in any block, and require any identity to have a deposit

before proposing any transaction, so that the miner cannot create a large number of

identities to submit too many fake transactions. We assume that the miner would not

afford to inject more than ϵ1n transactions.

2. The miner may ignore some hashes in Step 2, without seeing their bids (interim M-TD).

In this way, the system effectively runs with a smaller n. But if we set the parameter

h in the way described in Section 4.7.1, reducing n cannot benefit the miner’s revenue.

Besides, the users who have their hashes ignored can also report this behavior and get

the miner penalized. We assume that the miner will be caught if she ignores more

than ϵ2n hashes.

3. The miner may insert or ignore transactions after she sees the bids in Step 3 (ex-post

M-FT and M-TD), but this type of behavior will be detected. If the number of deviations
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goes beyond an acceptable level, the miner will be penalized. On the other hand, an

acceptable level ϵ3 > 0 is necessary because a missing transaction might also be simply

due to the unstable connection from the user.

Hence, our protocol can restrict the miner individual deviation into a low level compared

to n, and from the argument in Section 4.7.1, the relative advantage in miner revenue from

{M-FT, M-TD} is bounded below O

((
ϵ1+ϵ3
1−ϵ2

)4/3)
. However, the miner-user collusion cannot

be effectively prevented in this way, as they may conduct the collusion off-chain before Step

1.

Therefore, we can remark that:

Remark 2. Existing cryptographic protocols can effectively prevent miner individual

deviations, but can only prevent part of miner-user collusions.

On the other hand, one may feel that the individual user’s deviation is a “least destructive”

honest behavior, because it happens in users’ minds and does not seemingly disrupt the

blockchain system. Hence, it also cannot be detected or prevented on the system level at all.

However, we still argue that a desirable TFM should satisfy truthfulness, i.e., no individual

user’s deviation should be profitable. One key reason to design truthful mechanisms is the

Revelation Principle [70, 71]: informally, for any non-truthful mechanism, we can construct

an “equivalent” direct truthful mechanism that incorporates agents’ optimal strategies into

the mechanism itself, so that agents would maximize their utilities by reporting their true

types (bidding their valuations). It renders untruthfulness unable to gain more advantage

revenue.1 Additionally, by the argument of the Revelation Principle, we also only need to

consider single-round mechanisms. Hence, we remark that:

Remark 3. The optimal revenue for any single-round truthful TFM is optimal even

considering the class of non-truthful and multi-round mechanisms.

Furthermore, due to the anonymity of the blockchains [198], it is difficult for users to

collude with each other, as argued by [41]. Thus, user-user collusion is not a critical issue
1As long as there exists a mechanism whose outcome can achieve certain desired properties, we can indeed

construct the equivalent truthful mechanism that both prevents agents from strategic behavior, and simplify
the analysis as we can assume rational agents who seek to maximize their individual utilities will indeed
follow the mechanism as we expect.
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in the design of blockchain transaction fee mechanisms. Therefore, the remaining challenge

to resolve is the prevention of user individual deviation and miner-user collusion, but as we

have discussed, such dishonest behavior cannot be effectively prevented at the systematic

level, so we have to discourage them in an economic way. In conclusion, we can remark that:

Remark 4. To design a desirable blockchain transaction fee mechanism, the most critical

challenge is to discourage individual user’s deviation and miner-user collusion
via economic methods.

B.2 Impossibility Result on Deterministic TFM

In this section, we propose an impossibility result that under certain conditions, any

deterministic TFM which is U-BNIC and 1-SCP cannot have positive miner revenue. Here

we additionally introduce several notions. Although this impossibility does not fully rule

out deterministic mechanisms, it does motivate us to introduce randomness into our main

mechanism.

Deterministic. When bids are distinct, the outcome of the auction is deterministic, i.e.,

ai ∈ {0, 1}.

Symmetric. When we swap the bids of two users, their allocations and payments are

exactly swapped.

Continuous. p and r are continuous functions of b, and V has bounded, strictly positive

PDF on a simply connected support dom(V ).

Strongly Monotone. If we raise the bid of bidder i while leave other bids unchanged,

ai, pi do not decrease and aj(∀j ̸= i) does not increase.

Theorem B.1. For all deterministic, symmetric, continuous, strongly monotone, user-

individually-rational and budget-feasible TFMs, if 0 ∈ V , then U-BNIC and 1-SCP implies

non-positive miner revenue.
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B.2.1 Proof of Theorem B.1

Proof sketch. To prove the non-positive-miner-revenue property of all satisfying

mechanisms, we first show that all satisfying mechanisms must obey certain restrictive

conditions, as the payment (Sec. B.2.1) and revenue (Sec. B.2.1) rules both must follow

corresponding closed-form formulas; then we show that this type of mechanisms have non-

positive miner revenue.

In this section, we introduce the δ-function with

∫ ϵ

−ϵ

δ(t)dt = 1, ∀ϵ > 0. (B.1)

We assume there exists a transaction fee mechanismM0(a, p, r) that satisfies all conditions.

Pinning down the payment rule.

From definition we know that if M0 is BNIC, then

∂Ev−i∼V−i
[ui(bi, vi, v−i)]

∂bi

∣∣∣∣
bi=vi

= 0, ∀vi (B.2)

i.e.,

∫
v−i

(
(vi − pi(vi, v−i))

∂ai(vi, v−i)

∂vi

−ai(vi, v−i)
∂pi(vi, v−i)

∂vi

)
ρ−i(v−i)dv−i = 0, (B.3)

in which ρ−i(·) is the pdf of V−i.

For fixed v−i, since the mechanism is deterministic, we have that ai(·, v−i) ∈ {0, 1} almost

everywhere. Additionally because ai(·, v−i) is monotonic increasing, we have
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ai(vi, v−i) =

0, vi < θ(v−i)

1, vi > θ(v−i),

(B.4)

in which θ(v−i) is a constant for fixed v−i. Therefore,

∂ai(vi, v−i)

∂vi
= δ(vi − θ(v−i)). (B.5)

Now we have a lemma:

Lemma B.1. For ∀v−i,

pi(θ(v−i), v−i) = θ(v−i). (B.6)

Proof. Proof. If pi(θ(v−i), v−i) > θ(v−i), let t = pi(θ(v−i), v−i)−θ(v−i). Then by continuity,

there exists a small ϵ > 0 s.t. pi(θ(v−i) + ϵ, v−i) > θ(v−i) +
t
2

and ai(θ(v−i) + ϵ, v−i) = 1,

and the user i would have negative utility. In this scenario, the miner would want to collude

with user i and ask him to change his bid to θ(v−i) − ϵ, so that user i would now have 0

utility.

But by continuity, the change of the miner’s revenue is arbitrarily small, increasing their

total utility. So the 1-SCP property is violated.

If pi(θ(v−i), v−i) < θ(v−i), similarly there exists a scenario where user i has valuation

θ(v−i)− ϵ but the miner would want to let her bid θ(v−i) + ϵ instead, also violating 1-SCP.

Therefore, it must hold that pi(θ(v−i), v−i) = θ(v−i).

□ Q.E.D.

From Lemma B.1 we have

∫
v−i

(
(vi − pi(vi, v−i))

∂ai(vi, v−i)

∂vi

)
ρ−i(v−i)dv−i = 0, (B.7)
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so

∫
v−i

(
ai(vi, v−i)

∂pi(vi, v−i)

∂vi

)
ρ−i(v−i)dv−i = 0. (B.8)

Since monotonicity implies ∂pi(vi,v−i)
∂vi

≥ 0, we know that ∀vi > θ(v−i),
∂pi(vi,v−i)

∂vi
= 0.

Therefore,

∀bi > θ(v−i), ϵ > 0, pi(bi, v−i) = pi (θ(v−i) + ϵ, v−i) . (B.9)

Combined with Lemma B.1, from continuity we get

∀bi ≥ θ(v−i), pi(bi, v−i) = θ(v−i). (B.10)

Pinning down the miner revenue rule.

In this part, we mainly use the 1-SCP property to prove that the miner revenue is a

constant with regard to any user. To show this, we prove a lemma:

Lemma B.2. If vi ̸= θ(v−i), then ∂r(vi,v−i)
∂vi

= 0.

Proof. Proof. We recall that the total utility of the miner and user i is

Ci(bi, vi, v−i) = ai(bi, v−i)(vi − pi(bi, v−i)) + r(bi, v−i). (B.11)

From 1-SCP we know that

0 =
∂Ci(bi, vi, v−i)

∂bi

∣∣∣∣
bi=vi

(B.12)

=

(
(vi − pi(vi, v−i))

∂ai(vi, v−i)

∂vi

−ai(vi, v−i)
∂p(vi, v−i)

∂vi

)
+
∂r(vi, v−i)

∂vi
. (B.13)

From Eq. (B.10) we know ai(vi, v−i)
∂p(vi,v−i)

∂vi
≡ 0, and from Eq. (B.5) we know vi ̸=
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θ(v−i)⇒ ∂ai(vi,v−i)
∂vi

= 0. So we deduce

vi ̸= θ(v−i)⇒
∂r(vi, v−i)

∂vi
= 0. (B.14)

□ Q.E.D.

Because the continuity condition guarantees r(b) is a continuous function of b, from

Lemma B.2 we know that for fixed v−i, r(·, v−i) is a constant, hence

r(vi, v−i) = r(0, v−i). (B.15)

By iteratively apply Eq. (B.15) to all components of v, we get

r(v) = r(0). (B.16)

We notice that from UIR,

r(0) ≤
n∑

i=1

ai(0)pi(0) (B.17)

≤
n∑

i=1

ai(0) · 0 (B.18)

= 0. (B.19)

Therefore, we have

r(v) ≤ 0, ∀v. (B.20)

Here we prove Theorem B.1.
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B.3 Additional Perspectives of Auxiliary Mechanism Method

B.3.1 A Failed Example: the First-Price Auction

In this part, we use a simple example to help readers understand the constraints for an

admissible variation term. In particular, we will demonstrate a θ function that cannot be

coupled with any r̃ to form an admissible variation term. The θ function is constructed

based on the natural first-price auction. As an interesting by-product, this example also

shows that, although the first-price auction mechanism can be adapted to satisfy U-BNIC,

it cannot be combined with a miner payment rule r̃ to further enjoy the 1-SCP property.

We now define θ based on the first-price auction. For simplicity, we consider only n = 2

users and the block size k = 1. The first-price auction for the single block entry defines the

following allocation rule a (both first-price and second-price auctions confirm the highest-bid

user, also note that b−i is a scalar since there are only 2 users):

ai(bi, b−i) =


1, bi > b−i

1
2
, bi = b−i

0, bi < b−i

. (B.21)

We then consider the payment rules that will help us to finally define θ. The first payment

rule p is the dominant association of a. We calculate p via Eq. (4.7) as follows.

pi(bi, b−i) =

b−i, bi ≥ b−i

0, bi < b−i

. (B.22)

Indeed, a and p form the second-price auction which is DSIC.

We now turn to the second payment rule p̃ which is adapted from the payment rule of

the first-price auction. It is well-known that the first-price auction is not truthful (DSIC)

[37]: users would prefer to bid lower than their valuations, which is necessary for them to get

any surplus even if they get the item. Nevertheless, there exist Bayesian Nash equilibria for

specific settings when distributions of valuations are known. For example, when there are n
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users with i.i.d. uniformly random valuations over [0, 1], it is a Bayesian Nash equilibrium

for each bidder to bid n−1
n
vi. By the Revelation Principle [70, 71], we can derive a payment

rule p̃ to make the confirmed user pay n−1
n

times her bid. For n = 2, we derive p̃ as follows.

p̃i(bi, b−i) =


1
2
bi bi ≥ b−i

0 bi < b−i

. (B.23)

Finally, we define θ according to Eq. (4.8) and get that

θi(bi, b−i) =


1
2
bi − b−i bi > b−i

−1
4
bi bi = b−i

0 bi < b−i

. (B.24)

When the user valuation is uniformly random over [0, 1], we have that

Eb−i∼U [0,1][θi(0, b−i)] = 0 for i ∈ {1, 2}, indicating that θ satisfies the second condition

(Eq. (4.11)) of the admissibility property. Suppose that we could find a miner revenue

function r̃ such that T = (θ, r̃) is admissible. Let M = (a, p, 0). According to Theorem 4.2

and by the definition of θ, we have that the composed TFM

M̃ =M + T = (a, p, 0) + (θ, r̃) = (a, p̃, r̃)

is U-BNIC and 1-SCP. Then we could get the TFM M̃ which is a natural adaptation of the

first-price auction (since its payment rule p̃ is adapted from the first-price payment rule).
On the other hand, however, we show that this is impossible – there exists no r̃ such that

(θ, r̃) is admissible. We prove this by contradiction. Suppose there exists such an r̃, we
compute r̃(1, 1) in two different ways. By the first condition of admissibility (Eq. (4.10)),
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we have that

r̃(1, 1) = r̃(0, 0) + (r̃(1, 0)− r̃(0, 0)) + (r̃(1, 1)− r̃(1, 0))

= r̃(0, 0) + θ1(1, 0) + θ2(1, 1)

= r̃(0, 0) + 0.5− 0.25

= r̃(0, 0) + 0.25.

We can also invoke Eq. (4.10) and compute r̃(1, 1) via a different path:

r̃(1, 1)

= r̃(0, 0) + (r̃(0.5, 0)− r̃(0, 0)) + (r̃(0.5, 1)− r̃(0.5, 0))

+ (r̃(1, 1)− r̃(0, 1))− (r̃(0.5, 1)− r̃(0, 1))

= r̃(0, 0) + θ1(0.5, 0) + θ2(0.5, 1) + θ1(1, 1)− θ1(0.5, 1)

= r̃(0, 0) + 0.25 + 0− 0.25− 0

= r̃(0, 0) + 0.

Now we reach the contradiction. This example shows that using our auxiliary mechanism

method, we are not able to extend the natural first-price auction to a U-BNIC and 1-SCP

TFM.2 We will need to carefully design a different θ to satisfy the admissibility conditions.

B.3.2 A Conservative-field Perspective of the Payment Difference Function
{θi}

In this part, we distill our experience in the trial in Appendix B.3.1 and provide an additional

perspective for the design of θ. From the example, we see that if we sum up the differences

of θ along any path that consists of axis-aligned arcs, the summation should only depend

on the two terminals of the path. This suggests the path-independence property of the θ

function. In particular, for any θ in an admissible variation term (θ, r̃), if we define the
2It is possible to prove a stronger statement: there exists no r̃ such that the TFM (a, p̃, r̃) is 1-SCP

(where a and p̃ are defined based on the first-price auction as in Section B.3.1). Therefore, the does not
exist a U-BNIC and 1-SCP TFM extension based on the first-price auction. We omit the detailed proof of
this statement since it is not directly related to the construction and the analysis of our TFM.
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vector field

Dθ(b) =
(
∂

∂b1
θ1(b1, b−1), · · · ,

∂

∂bn
θn(bn, b−n)

)
, (B.25)

then Dθ should be a conservative field [199]. In other words, for any closed curve C (with

parametrization z), we have the following equality for the integration

∮
C

Dθ · dz = 0. (B.26)

According to Eq. (4.10), r̃ is actually the potential of Dθ. From this conservative-field

perspective, we see that in order to successfully construct an admissible variation term,

we may consider first constructing a r̃ (as the potential that determines the field), while

guaranteeing the θ functions satisfies Eq. (4.11). This intuition helps our design of the

admissible variation term. Nevertheless, it is still quite challenging to construct a good

variation term. Thanks to the almost-modular property of the auxiliary mechanism and the

variation term, we can re-use an admissible variation term in different settings, as we do in

Sections 4.5-4.6.

B.3.3 Intuition of Variation Term Construction in Section 4.5.2

From the admissibility condition Eq. (4.10), i.e., θi(bi, b−i) = r̃(bi, b−i)− r̃(0, b−i), we get

r̃(bi, b−i) = r̃(bi, 0) + θ(bi, b−i) (B.27)

From another admissibility condition of Eq. (4.11), i.e., Eb−i
[θi(bi, b−i)] = 0, for

convenience we decouple bi and b−i and construct θi in the following form

θi(bi, b−i) = h · α(bi) · β(b−i), (B.28)
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in which β(b−i) is a symmetric expression on b−i and

Eb−i
[β(b−i)] = 0. (B.29)

Now we consider the case of b−i = 0 and m is large, i.e., the situation is close to a second-

price auction in which all other users bid zero, and the user i’s payment in the auxiliary

mechanism is close to zero.

However, as long as bi > 0, by intuition user i is capable of paying more. From the

allocation rule, for any fixed m we can actually find a K > 0 in which ai(bi, 0) ≥ Kbi, and

hence user i is able to pay at least ai(bi, 0) · bi ≥ Kb2i . On the other hand, from Myerson’s

Lemma (Lemma 4.1), in the auxiliary mechanism we also have ai(bi, 0)pi(bi, 0) = Θ(b2i ) when

bi → 0, but quickly “saturating” when bi > Θ( 1
m
) and ai(bi, 0) become close to 1. Hence, to

uniformly exploit payment from user i for different values of bi, we would like to construct3

α(bi) =
1

2
b2i . (B.30)

On the other hand, since the expression of θi(·) will appear in the expression of r̃(·), and

r̃(·) is a symmetric expression. In order to ensure symmetry, we construct

β(b−i) = 1− µ
∑
j:j ̸=i

b2j . (B.31)

Even if it indicated less payment when b−i are large on the users’ side, the negative fourth

order terms in the expression of r̃(b) are “halved” compared to the sum of {θi(bi, b−i)},

yielding a positive expected miner revenue.

From Eq.(B.29), we have

µ =
1

Eb−i
[
∑

j:j ̸=i b
2
j ]

(B.32)

=
1

cρ(n− 1)
. (B.33)

3We introduced a coefficient 1
2 because we initially constructed the variation term via partial derivatives.
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From Eqs. (B.28,B.30,B.31,B.33) we get the construction of the variation term as

Eqs. (4.19,4.20).

B.4 Omitted Proofs

B.4.1 Proof of Theorem 4.2

First, we observe a sufficient condition for a TFM to be U-BNIC.

Observation 1. M̃ is U-BNIC if

Eb−i∼V−i
[θi(bi, b−i)] = 0. (B.34)

Proof. Proof. Because user i’s expected utility ũ(bi, b−i; vi) = u(bi, b−i; vi) − θ(bi, b−i), if

Eb−i∼V−i
[θi(bi, b−i)] = 0, then for any bidding vector b and i’s valuation vi, mechanisms M

and M̃ have the same expected utility

Eb−i∼V−i
[u(bi, b−i; vi)] = Eb−i∼V−i

[ũ(bi, b−i; vi)]. (B.35)

As mechanism M is U-BNIC, it holds that M̃ is also U-BNIC.

Q.E.D.

As we have characterized a sufficient condition for U-BNIC, now we consider the condition

for 1-SCP. We first introduce a lemma as a sufficient and necessary condition for a TFM to

be 1-SCP:

Lemma B.3. The mechanism M = (a, p, r) is 1-SCP if and only if the following conditions

are satisfied:

• Monotone allocation: ai(·, b−i) is monotonic non-decreasing,
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• Constrained payment function:

ai(bi, b−i)pi(bi, b−i)− r(bi, b−i)

=

∫ bi

0
t
∂ai(t, b−i)

∂t
dt+ ai(0, b−i)pi(0, b−i)− r(0, b−i). (B.36)

Proof. Proof. Consider another mechanism M ′ = (a, p − r
a , 0). Since M ′ has zero miner

revenue, it is 1-SCP if and only if it is U-DSIC.

From Lemma 4.1, M ′ is U-DSIC if and only if the given conditions hold. So M ′ is 1-SCP

if and only if the conditions hold.

Notice that for the same bidding vector b, the miner and user i have the same total utilities

in mechanisms M and M ′. So M is 1-SCP if and only if the conditions hold.

Q.E.D.

From Lemma B.3 we know that for an 1-SCP mechanism (a, p̃, r̃), if we fix b−i, the
difference of ai(·, b−i)p̃i(·, b−i) and r̃i(·, b−i) is a constant. Furthermore, since a(·, b−i) is
monotonic increasing, if we want M̃ to be 1-SCP, from Lemma B.3 we need and only need:

ai(bi, b−i)p̃i(bi, b−i)− r̃(bi, b−i)

=

∫ bi

0
t
∂ai(t, b−i)

∂t
dt+ ai(0, b−i)p̃i(0, b−i)− r̃(0, b−i). (B.37)

From the construction of p we have

ai(bi, b−i)pi(bi, b−i) =

∫ bi

0

t
∂ai(t, b−i)

∂t
dt. (B.38)

Since we set the boundary condition p̃i(0, b−i) = 0, and the definition of {θi} as

θi(bi, b−i) = ai(bi, b−i)(p̃i(bi, b−i)− pi(bi, b−i)), we get a sufficient condition of 1-SCP as:

θi(bi, b−i) = r̃(bi, b−i)− r̃(0, b−i), ∀i. (B.39)

So M̃ is indeed U-BNIC and 1-SCP if M is U-DSIC and 1-SCP and T is admissible.

182



B.4.2 Proof of Lemma 4.2

We have

r̃(bi, b−i)− r̃(0, b−i) =
1

2
h

(
b2i −

∑
j ̸=i b

2
i b

2
j

cρ(n− 1)

)
(B.40)

=
1

2
hb2i

(
1−

∑
j ̸=i b

2
j

cρ(n− 1)

)
(B.41)

= θi(bi, b−i) (B.42)

and

Eb−i∼V−i
θi(bi, b−i)

= Eb−i∼V−i

[
−1

2
hb2i

( ∑
j ̸=i b

2
j

cρ(n− 1)
− 1

)]
(B.43)

= −1

2
hb2i

(∑
j ̸=i Eb−i∼V−i

[b2j ]

cρ(n− 1)
− 1

)
(B.44)

= −1

2
hb2i

( ∑
j ̸=i cρ

cρ(n− 1)
− 1

)
(B.45)

= 0. (B.46)

Therefore, the variation term T is admissible.

B.4.3 Proof of Theorem 4.3

From the auxiliary mechanism method, the mechanism M̃ = (a, p̃, r) is U-BNIC and 1-SCP

from Theorem 4.2. Now we prove the UIR, BF and U-SP properties.

Proof of UIR and BF.

From Eq. (4.16) we know pi(0, b−i) = 0. Then for n→∞, from Lemma 4.1 and bi ∈ [0, 1]

we get:

183



ai(bi, b−i)pi(bi, b−i) =

∫ bi

0

t
∂ai(t, b−i)

∂t
dt (B.47)

=

∫ bi

0

t ·
et
∑

j ̸=i e
bj(

et +
∑

j ̸=i e
bj

)2dt. (B.48)

Since t ∈ [0, 1], it holds that

et
∑

j ̸=i e
bj

et +
∑

j ̸=i e
bj

=

(
1

et
+

1∑
j ̸=i e

bj

)−1

(B.49)

≥
(
1

1
+

1

n− 1

)−1

(B.50)

=
n− 1

n
. (B.51)

Combined with et +
∑

j ̸=i e
bj ≤ en, we have

et
∑

j ̸=i e
bj(

et +
∑

j ̸=i e
bj

)2 ≥ n− 1

en2
. (B.52)

Hence,

ai(bi, b−i)pi(bi, b−i) ≥
∫ bi

0

t
n− 1

en2
dt (B.53)

=
n− 1

2en2
· b2i . (B.54)
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Therefore, the difference of the total collected fee and miner revenue in M̃ is

n∑
i=1

ai(bi, b−i)p̃i(bi, b−i)− r̃(b)

=
n∑

i=1

ai(bi, b−i)pi(bi, b−i) +
n∑

i=1

θi(bi, b−i)− r̃(b) (B.55)

≥ n− 1

2en2
·

n∑
i=1

b2i −

(
h

∑
1≤i<j≤n b

2
i b

2
j

cρ(n− 1)
− h

2

n∑
i=1

b2i

)

− 1

2
h

(
n∑

i=1

b2i −
∑

1≤i<j≤n b
2
i b

2
j

cρ(n− 1)

)
(B.56)

=
n− 1

2en2
·

n∑
i=1

b2i −
h

2cρ(n− 1)

∑
1≤i<j≤n

b2i b
2
j (B.57)

≥ n− 1

2en2
·

n∑
i=1

b2i −
n∑

i=1

b2i

(
h

4cρ(n− 1)

n∑
i=1

b2i

)
(B.58)

≥ n− 1

2en2
·

n∑
i=1

b2i −
n∑

i=1

b2i

(
h

4cρ(n− 1)
· n
)

(B.59)

=
n∑

i=1

b2i ·
(
n− 1

2en2
− hn

4cρ(n− 1)

)
. (B.60)

So M̃ is budget feasible as long as h ≤ 2cρ(n−1)2

en3 = Θ(cρ/n).

For user individual rationality,

bi − p̃i(bi, b−i)

= bi − pi(bi, b−i)−
θi(bi, b−i)

ai(bi, b−i)
(B.61)

=
1

ai(bi, b−i)

[
bi

(
ai(0, b−i) +

∫ bi

0

∂ai(t, b−i)

∂t
dt

)
−
∫ bi

0
t
∂ai(t, b−i)

∂t

]
(B.62)

=
1

ai(bi, b−i)

[
biai(0, b−i) +

∫ bi

0
(bi − t)

∂ai(t, b−i)

∂t
dt

+
1

2
hb2i

( ∑
j ̸=i b

2
j

cρ(n− 1)
− 1

)]
. (B.63)
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From Eq.(B.52), we also have

∫ bi

0

(bi − t)
∂ai(t, b−i)

∂t
dt

=

∫ bi

0

(bi − t) ·
et
∑

j ̸=i e
bj(

et +
∑

j ̸=i e
bj

)2dt (B.64)

≥
∫ bi

0

(bi − t) ·
n− 1

en2
dt (B.65)

=
n− 1

2en2
· b2i . (B.66)

Therefore, when h = 2cρ(n−1)2

en3 , since cρ ≤ 1, we have

ũi(bi, b−i; bi)

= biai(0, b−i) +

∫ bi

0

(bi − t)
∂ai(t, b−i)

∂t
dt

+
1

2
hb2i

( ∑
j ̸=i b

2
j

cρ(n− 1)
− 1

)
(B.67)

≥ bi
en

+

∫ bi

0

(bi − t)
∂ai(t, b−i)

∂t
dt

+
1

2
hb2i

( ∑
j ̸=i b

2
j

cρ(n− 1)
− 1

)
(B.68)

≥ b2i

(
1

en
+
n− 1

2en2
− h

2

)
(B.69)

= b2i

(
1

en
+
n− 1

2en2
− cρ(n− 1)2

en3

)
(B.70)

≥ b2i

(
1

en
+
n− 1

2en2
− 1

en

)
(B.71)

≥ 0. (B.72)

So the UIR also holds for h = 2cρ(n−1)2

en3 .

Therefore, we have shown h∗(n, cρ) ≥ 2cρ(n−1)2

en3 = Ω(cρ/n).

Proof of U-SP.
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We first consider the auxiliary mechanism (a, p, r). Denote w−i =
∑

j ̸=i e
mbj , then we have

ai(bi, b−i) =
embi

embi + w−i

(B.73)

pi(bi, b−i) = bi −
embi + w−i

membi
ln e

mbi + w−i

1 + w−i

. (B.74)

The utility of identity i is ui(bi, b−i; vi) = ai(bi, b−i)(vi − pi(bi, b−i)). We can also regard

as it as a function of (bi, w−i, vi), then we have

∂ui
∂w−i

∣∣∣∣
bi=vi

=
− 1

1+w−i
+ 1

em+w−i

m
≤ 0. (B.75)

As injecting fake bids is equivalent to increasing w−i for identity i in the auxiliary mechanism,

it cannot increase identity i’s utility in the auxiliary mechanism.

However, the injected fake bids can influence user i’s utility in two more aspects, as:

• The variation term.

• The utilities of fake identities.

We denote h as the scaling parameter for total user number n+ l, hence, we have

h ≤ 2cρ(n+ l − 1)2

e(n+ l)3
. (B.76)

Without fake identities, the expectation of θi(bi, b−i) is zero. Therefore, denote Ω =

{i} ∪ {n + 1, · · · , n + l}, then Ω is the set of all identities that the user has access to, and

we only need to show that

Eb−i∼V−i

[
n+l∑

j=n+1

aj(bj, b+
−j)pj(bj, b+

−j)

+
∑
j∈Ω

θ(bj, b+
−j)

]
≥ 0. (B.77)

For a refined analysis of constants, we denote the Sybil attacker has real identity i, and
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submits fake bids with identities n+ 1, · · · , n+ l. We denote that:

σ =
∑

j≤n,j ̸=i

b2j ,

σ# =
n+l∑

j=n+1

b2j ,

Then σ is a random variable independent to any bj for j ∈ Ω, and it holds that

Eb−i∼V−i
[σ] = cρ(n− 1).

From Eq. (B.54) , we have

n+l∑
j=n+1

aj(bj, b+
−j)pj(bj, b+

−j) ≥
n+ l − 1

2e(n+ l)2

n+l∑
j=n+1

b2j (B.78)

≥ 1

2e(n+ l + 2)
· σ#. (B.79)

For j ∈ Ω, we have

θ(bj, b+
−j) = −

1

2
hb2j

(∑
t≤n+l,t ̸=j b

2
t

cρ(n+ l − 1)
− 1

)
(B.80)

= −1

2
hb2j

(
σ + σ# + b2i − b2j
cρ(n+ l − 1)

− 1

)
. (B.81)
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Here, σ is the only random variable in the expression, and

Eb−i∼V−i

[∑
j∈Ω

θ(bj, b+
−j)

]

= Eb−i∼V−i

[
−
∑
j∈Ω

1

2
hb2j

(
σ + σ# + b2i − b2j
cρ(n+ l − 1)

− 1

)]
(B.82)

= −h
2

∑
j∈Ω

b2j ·
(
Eb−i∼V−i

[σ] + σ# + b2i
cρ(n+ l − 1)

− 1

)

+
h

2

∑
j∈Ω

b4j
cρ(n+ l − 1)

(B.83)

= −h
2
(σ# + b2i ) ·

σ# + b2i − cρl
cρ(n+ l − 1)

+
h

2
·

∑
j∈Ω b

4
j

cρ(n+ l − 1)
(B.84)

=
h

2cρ(n+ l − 1)

(
− σ2

# − 2b2iσ# − b4i

+ cρl(σ# + b2i ) + b4i +
n+l∑

j=n+1

b4j

)
(B.85)

≥ h

2cρ(n+ l − 1)

(
−σ2

# − 2b2iσ#
)

(B.86)

≥ n+ l − 1

e(n+ l)3
(
−σ2

# − 2σ#
)
. (B.87)

From Eqs. (B.79,B.87), Eq. (B.77) is implied by

1

2e(n+ l + 2)
σ# ≥

n+ l − 1

e(n+ l)3
(σ2

# + 2σ#). (B.88)

Noticing that ∀bi ≤ 1, so σ# ≤ l. We only need

(n+ l)3 ≥ 2(n+ l + 2)(n+ l − 1)(l + 2). (B.89)

Now for any C ∈ [0, 1), we assume n ≥ 6C+5
1−C2 , then denote φ = l

n
≤ C, and we have
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(1 + φ)3n3 − 2((1 + φ)n+ 2)((1 + φ)n− 1)(φn+ 2) (B.90)

= (1 + φ)((1− φ2)n− (6φ+ 4))n− 4)n+ 8. (B.91)

Since n ≥ 6C+5
1−C2 , we see that n ≥ 5, and (1−φ2)n− (6φ+4) ≥ (1−C2)n− (6C +4) ≥ 1.

Hence,

(1 + φ)((1− φ2)n− (6φ+ 4))n− 4)n+ 8 (B.92)

≥ 1 · (1 · n− 4)n+ 8 (B.93)

≥ 13 (B.94)

> 0. (B.95)

Now we prove that the mechanism is (C, 6C+5
1−C2 )-U-SP for any C ∈ [0, 1).

B.4.4 Proof of Theorem 4.4

From the auxiliary mechanism method, we have the U-BNIC and 1-SCP properties as long

as the allocation rule is monotone. Hence, our proof for Theorem consists of 3 parts:

• Proof of monotonicity of allocation rule.

• Proof of UIR and BF.

• Proof of U-SP.

Proof of Monotonicity of Allocation Rule.

For monontonicity, we just need to show that for any b−i, ai(bi, b−i) ≥ ai(b
′
i, b−i) if bi ≥ b′i.

If 1 ≤ n ≤ k, we have ai(bi, b−i) = ai(b
′
i, b−i) = 1, so the monotonicity holds. Now we

consider n > k.

For convenience denote wi = embi and without loss of generality we assume i = n. Now

For any map X : N+ → [0, 1), vector t s.t. 0 = t0 < t1 < t2 < · · · < tn−1 < tn = 1,

B0 ⊆ [0, 1) and k ≤ n− 1, define an algorithm as Algorithm 7:
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Algorithm 7 Draw(X, t, B0, k)

1: Input X, t, B0, k;
2: B ← B0; S ← ∅;
3: u← 1; v ← 1;
4: while v ≤ k do
5: x← X(u);
6: if x /∈ B then
7: Find i s.t. x ∈ [ti−1, ti);
8: S ← S ∪ i;
9: v ← v + 1;

10: B ← B ∪ [tx−1, tx);
11: u← u+ 1;
12: Output S;

Now we denote Wi =
wi∑n
i=1 wi

for 1 ≤ i ≤ n, and

W ′
i =

Wi, i ≤ n− 1

emb′n∑n
i=1 wi

, i = n.

Then, we define t, t′ as

ti =
i∑

j=1

Wj, 0 ≤ i ≤ n

t′i =


∑i

j=1W
′
j , 0 ≤ i ≤ n

1, i = n+ 1.

Then when X is a i.i.d. uniform random sequence in [0, 1), we can see that

• Draw(X, t, ∅, k) randomly samples k items among {1, · · · , n} with weights {Wi}

without replacement.

• Draw(X, t′, [t′n, 1), k) randomly samples k items among {1, · · · , n} with (relative)

weights {W ′
i}i∈[n] without replacement.

In fact, Algorithm 7 performs random drawing without replacement in the following way.

Every round an item in {1, · · · , n} is drawn, and in the second scenario the total weights is

less than 1 so that a “placeholder” item n + 1 with weight 1 − t′n is added. If the item is
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already drawn or is the “placeholder”, we draw again; other wise, we finalize it and add it

to S.

In the rest of the proof, we prove that

Pr[n ∈ Draw(X, t, ∅, k)]

≥ Pr[n ∈ Draw(X, t′, [t′n, 1), k)]

by actually showing

n ∈ Draw(X, t′, [t′n, 1), k)⇒ n ∈ Draw(X, t, ∅, k).

In fact, assume n ∈ Draw(X, t′, [t′n, 1), k). By the time the drawing process

Draw(X, t′, [t′n, 1), k) stops, if no value X(u) ∈ [t′n, 1) is obtained, then Draw(X, t, ∅, k)

has exactly the same outcome, so it also contains n.

If in some round X(u) ∈ [t′n, 1) is obtained in Draw(X, t′, [t′n, 1), k, we consider the first

round that happens.

Before that round, Draw(X, t, ∅, k) have the same outcome, so it is not stopped either.

In that round, Draw(X, t, ∅, k) adds n to S, so n ∈ Draw(X, t, ∅, k).

So we have shown that n ∈ Draw(X, t′, [t′n, 1), k) ⇒ n ∈ Draw(X, t, ∅, k), implying the

monotonicity of the allocation rule.

Proof of UIR and BF.

From Lemma 4.1, similar to the case of block size 1, we essentially need to derive a lower

bound on ∂ai(t,b−i)
∂t

, in order to lower bound the total payment. Therefore, we only need to

analyze the partial derivative of δt(i; j) on wi.

When we fix j and b−i (i.e., w−i), we can regard δt(i; j) as a function of wi. Here we make

a notation of Xs for 0 ≤ s ≤ k − 1 as

Xs = W − wi −
s∑

z=1

wjz , (B.96)
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then Xs is a constant.

From Eq. (4.24) we get (note that W −
∑s

z=1wjs = Xs + wi)

∂δt(i; j)

∂wi

=

(
t−1∏
s=1

wjs

)
· ∂

∂wi

wi∏t−1
s=0(Xs + wi)

, (B.97)

and

∂

∂wi

wi∏t−1
s=0(Xs + wi)

=
∂

∂wi

(
wi ·

t−1∏
s=0

1

Xs + wi

)
(B.98)

=
t−1∏
s=0

1

Xs + wi
+ wi ·

∂

∂wi

t−1∏
s=0

1

Xs + wi
(B.99)

=
t−1∏
s=0

1

Xs + wi
− wi ·

(
t−1∑
s=0

1

Xs + wi

)
·

(
t−1∏
s=0

1

Xs + wi

)
(B.100)

=

(
t−1∏
s=0

1

Xs + wi

)
·

(
1− wi

t−1∑
s=0

1

Xs + wi

)
(B.101)

Notice that Xs +wi is a sum of (n− s) weights, each one no less than 1, so 1
Xs+wi

≤ 1
n−s
≤

ln n−s
n−s−1

, and wi = embi ≤ em. Therefore,

1− wi

t−1∑
s=0

1

Xs + wi

≥ 1− em
t−1∑
s=0

ln n− s
n− s− 1

(B.102)

= 1− em ln n

n− t
. (B.103)

Denote

D(m,λ) = 1− em ln λ

λ− 1
, (B.104)

then ∀n
k
< e

e−1
, ∃m > 0 s.t. D

(
m, n

k

)
> 0.

Therefore, from Eq. (B.97) we have
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∂δt(i; j)

∂wi

≥ D
(
m,

n

k

)(t−1∏
s=1

wjs

)(
t−1∏
s=0

1

Xs + wi

)
(B.105)

=D
(
m,

n

k

)
· wj1

X0 + wi

· wj2

X1 + wi

· · · · · 1

Xt−1 + wi

. (B.106)

We notice that wj1

X0+wi
· wj2

X1+wi
·· · ·· wjt−1

Xt−2+wi
is just the probability that the sampling outcome of

the first t−1 rounds are (j1, j2, · · · , jt−1), denoted as P (j[t−1]). Furthermore, fromXt−1+wi ≤

em · n, we have

∂δt(i; j)

∂wi

≥
D
(
m, n

k

)
emn

P (j[t−1]). (B.107)

Therefore from Eq. (4.23):

∂δt(i)

∂wi

=
∑

j∈Jt(i)

∂δt(i; j)

∂wi

(B.108)

≥
D
(
m, n

k

)
emn

∑
j∈Jt(i)

P (j[t−1]). (B.109)

For j ∈ Jt(i), we observe that j[t−1] iterates through all (t − 1)-permutations of [n] that

does not contain element i. Therefore,
∑

j∈Jt(i) P (j[t−1]) is the probability that i is not chosen

in the first (t− 1) rounds.

To compute the probability that i is not chosen in the first (t−1) rounds, we consider each

round. In each round, there are at least (n− k) users each with weight at least 1, and user i

has weight at most em, so i is chosen with probability at most em

n−k
. Therefore for t rounds, the

probability that i is not ever chosen is at most
(
1− em

n−k

)t ≥ (1− em

n−k

)k
= (1− o(1))e−

emk
n−k .

That implies:
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∂δt(i)

∂wi

≥ (1− o(1))
D
(
m, n

k

)
emn

e−
emk
n−k , (B.110)

so

∂ai(bi, b−i)

∂bi
=

∂wi

∂bi
· ∂ai(bi, b−i)

∂wi
(B.111)

= membi ·
k∑

t=1

∂δt(i)

∂wi
(B.112)

≥ membi ·
k∑

t=1

(
(1− o(1))

D
(
m, nk

)
emn

e−
emk
n−k

)
(B.113)

=
k

n

(
(1− o(1))membi

D
(
m, nk

)
em

e−
emk
n−k

)
(B.114)

For any fixed λ0 >
e

e−1
, let λ = n

k
. If λ ≥ λ0, let

m = m#(λ0) = min
{
1

2
ln 1

ln λ0

λ0−1

, 1

}
(B.115)

be a constant. Then we have:

D(m,λ) = max
{
1−

√
ln λ

λ− 1
, 1− e ln λ

λ− 1

}
. (B.116)

Because m#(·) and D(m, ·) are non-decreasing, we have

∂ai(bi, b−i)

∂t
≥ k

n

(
(1− o(1))membi

D
(
m, nk

)
em

e−
emk
n−k

)
(B.117)

≥ k

n

(
(1− o(1))m

D (m,λ0)

e
e
− em

λ0−1

)
. (B.118)

Because m,λ0, D(m,λ0) are all positive constants, we get

∂ai(bi, b−i)

∂t
≥ k

n
f(λ0)(1− o(1)). (B.119)
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Figure B.1: The plot of f(·).

Therefore, from Lemma 4.1 and pi(0, b−i) = 0, we get

ai(bi, b−i)pi(bi, b−i) =

∫ bi

0

t
∂ai(t, b−i)

∂t
dt (B.120)

≥
∫ bi

0

t
k

n
f(λ0)(1− o(1))dt (B.121)

= f(λ0)Θ

(
k

n
b2i

)
. (B.122)

Here, the expression of f(·) is given by

f(λ) =
m#(λ)D(m#(λ), λ)

em#(λ)
(B.123)

and can be plotted as in Figure B.1. It can be noticed that f(·) is monotonic increasing and

lim
λ→+∞

f(λ) =
1

e
. (B.124)

Then, when we let p̃i(bi, b−i) = pi(bi, b−i) +
θi(bi,b−i)
ai(bi,b−i)

while using the variation term of

Eqs. (4.19-4.20), similar to the argument of Eqs. (B.55-B.63), we can get the UIR and BF

properties.

Detailed constant analysis.
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From the assumption that n ≥ 30 and n > e
e−1

k, we have n− k ≥ 3 > e ≥ em. Since

(1− α)k = (1 +
α

1− α
)−k ≥ e−

kα
1−α , α ∈ [0, 1)

we have

(
1− em

n− k

)k

≥ e−
emk

n−k−em . (B.125)

Then we get that

∂δt(i)

∂wi

≥
D
(
m, n

k

)
emn

e−
emk

n−k−em , (B.126)

Since n ≥ 30, we have

∂ai(bi, b−i)

∂t
≥ k

n

(
membi

D
(
m, n

k

)
em

e−
emk

n−k−em

)
(B.127)

>
k

n

(
membi

D
(
m, n

k

)
em

e−
emk

(n−3)−k

)
(B.128)

≥ k

n

(
membi

D
(
m, n

k

)
em

e−
emk

0.9n−k

)
(B.129)

≥ k

n

(
m
D (m,λ0)

em
e
− e

0.9λ0−1

)
(B.130)

=
k

n

(
f(λ0)e

− e
0.9λ0−1

)
. (B.131)

Here, we can let

g(λ) = ef(λ)e−
e

0.9λ−1 , (B.132)

then g is increasing and

lim
λ→∞

g(λ) = 1. (B.133)
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It holds that

ai(bi, b−i)pi(bi, b−i) =

∫ bi

0

t
∂ai(t, b−i)

∂t
dt (B.134)

≥ g(λ)

2e
· k
n
b2i . (B.135)

Similar to the argument of Eqs. (B.55-B.63), the UIR and BF hold when

h∗ = g(λ0) ·
2kcρ(n− 1)

en2
. (B.136)

Proof of U-SP.

Since the variation term of the mechanism for block size k has the same form as block size

1, we can show that the effects of the variation term do not influence the U-SP property in

the same way as Appendix B.4.3. Furthermore, because fake transactions have zero valuation

and non-negative payment, we only need to prove the following proposition:

Proposition B.2. For any user i, adding a fake bid will not benefit her utility in the

Auxiliary Mechanism M for block size k.

Actually when pi(0, b−i) = 0, the payment function in Myerson’s Lemma has an equivalent
form [41]:

ai(bi, b−i)pi(bi, b−i) = ai(bi, b−i)bi −
∫ bi

0
ai(t, b−i)dt. (B.137)

Therefore, the utility of user i when truthfully bidding in the auxiliary mechanism is:

ui(bi, b−i; bi) =

∫ bi

0

ai(t, b−i)dt. (B.138)

Now we only need to show that when we inject a fake transaction, the probability that a

user (bidding arbitrary t) is confirmed would not increase, as the following lemma:

Lemma B.4. In a weighted random sampling without replacement, if we add a new item,

the probability that any already existing item is chosen does not increase.
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Proof. Consider the Algorithm 7. Now we assume there are n items 1, · · · , n with weights

w1, · · · , wn and without loss of generality we assume
∑n

i=1 = 1, and define tj =
∑j

i=1wi,

then when X is a i.i.d. uniform random sequence in [0, 1), we can see that

• Draw(X, t, ∅, k) randomly samples k items among {1, · · · , n} without replacement.

• Draw(X, t, [tn−1, 1), k) randomly samples k items among {1, · · · , n − 1} without

replacement.

We recall that Algorithm 7 performs random drawing without replacement in the following

way. Every round an item in {1, · · · , n} is drawn. If the item is already drawn or does not

exist, we draw again; otherwise, we finalize it and add it to S.

In the rest of the proof, we prove that ∀i ∈ {1, · · · , n− 1},

Pr[i ∈ Draw(X, t, [tn−1, 1), k)]

≥ Pr[i ∈ Draw(X, t, ∅, k)]

by actually showing

i ∈ Draw(X, t, ∅, k) ⇒ i ∈ Draw(X, t, [tn−1, 1), k).

In fact, for fixed X, because

P ⊆ Q ⇒ P ∪R ⊆ Q ∪R,

after each round of drawing, the B in Draw(X, t, ∅, k) is always a subset of the B in

Draw(X, t, [tn−1, 1), k). Therefore, Draw(X, t, [tn−1, 1), k) would draw no less rounds than

Draw(X, t, ∅, k).

Besides, we see that when i ̸= n, i is drawn if and only if a x ∈ [ti−1, ti) appears by the time

the drawing completes, so if i ∈ Draw(X, t, ∅, k), we indeed have i ∈ Draw(X, t, [tn−1, 1), k).

Hence we have shown that Pr[i ∈ Draw(X, t, [tn−1, 1), k)] ≥ Pr[i ∈ Draw(X, t, ∅, k)].

□
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Q.E.D.

From Lemma B.4 we prove that our TFM for block size k is U-SP.

For the corresponding constants, we note that in the mechanism of block size 1, the

expected payment of a user bidding bi is lower bounded by ∼ b2i
2en

and h ≲ 2cρ
en

, and it is(
C,O( 1

1−C
)
)
-U-SP for any C < 1. In the mechanism of block size k, the expected payment

of user i is lower bounded by g(λ0)k · b2i
2en

, and h ≲ g(λ0)k · 2cρen
. Hence, it can be shown in a

similar way that Mechanism 3 is also
(
C,O( 1

1−C
)
)
-U-SP for any C < 1.

B.4.5 Proof of Theorem 4.5

Without loss of generality, we can assume the miner will conduct the deviation in this

way: in Stage 1 the miner deletes transactions one by one, and then in Stage 2 inject fake

transactions one by one. Then we introduce two lemmas before proving the theorem: firstly

analyze the robustness of the miner revenue function r̃, then upper bound the advantage the

miner may gain in each stage.

Robustness analysis of the miner revenue function..

Firstly, we assume that the mean of b2i is close to cρ = Θ(1), which holds with high

probability with large n and ∆ = o(n). Here we define H = Lcρ, then we prove the following

lemma, showing that as long as the average of {b2i } is close to cρ, adding or deleting a

transaction would not have a significant impact on the miner revenue:

Lemma B.5. If
∣∣∣∑n

i=1 b
2
i

n
− cρ

∣∣∣ < δ, and recall that

r̃(b) = Hk

2n

(
n∑

i=1

b2i −
∑

1≤i<j≤n b
2
i b

2
j

cρ(n− 1)

)
, (B.139)

then for n ≥ 3, there exists a constant CLB.5 s.t. ∀j ∈ [n],

|r̃(b−j)− r̃(b)| ≤ CLB.5δ ·
Hk

cρn
. (B.140)
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Proof. Proof. Without loss of generality we assume j = n. Then, we compute that

r̃(b−n)− r̃(b)
1
2Hk

=

∑n−1
i=1 b2i
n− 1

−
∑

1≤i<j≤n−1 b
2
i b

2
j

cρ(n− 2)(n− 1)

−
∑n

i=1 b
2
i

n
+

∑
1≤i<j≤n b

2
i b

2
j

cρ(n− 1)n
(B.141)

=
1

n(n− 1)

n−1∑
i=1

b2i −
b2n
n

−
2
∑

1≤i<j≤n−1 b
2
i b

2
j

cρn(n− 1)(n− 2)
+

b2n
∑n−1

i=1 b2i
cρn(n− 1)

(B.142)

=
1

n(n− 1)

(
n−1∑
i=1

b2i −
2
∑

1≤i<j≤n−1 b
2
i b

2
j

cρ(n− 2)

)

+
b2n
n

( ∑n−1
i=1 b2i

cρ(n− 1)
− 1

)
(B.143)

From the assumption we see that
∣∣∣∑n−1

i=1 b2i
cρ(n−1)

− 1
∣∣∣ = O(δ/cρ) and b2n ≤ 1, we have

∣∣∣∣∣b2nn
( ∑n−1

i=1 b
2
i

cρ(n− 1)
− 1

)∣∣∣∣∣ = O(δ/cρn). (B.144)

Now we only need to prove that
∣∣∣∑n−1

i=1 b
2
i −

2
∑

1≤i<j≤n−1 b
2
i b

2
j

cρ(n−2)

∣∣∣ = O(δn/cρ).

In fact, we notice that

2
∑

1≤i<j≤n−1

b2i b
2
j =

(
n−1∑
i=1

b2i

)2

−
n−1∑
i=1

b4i . (B.145)
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Hence, ∣∣∣∣∣
n−1∑
i=1

b2i −
2
∑

1≤i<j≤n−1 b
2
i b

2
j

cρ(n− 2)

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
i=1

b2i −
(∑n−1

i=1 b
2
i

)2 −∑n−1
i=1 b

4
i

cρ(n− 2)

∣∣∣∣∣ (B.146)

=

∣∣∣∣∣
n−1∑
i=1

b2i ·

(
1−

∑n−1
i=1 b

2
i

cρ(n− 2)

)
−
∑n−1

i=1 b
4
i

cρ(n− 2)

∣∣∣∣∣ (B.147)

≤
n−1∑
i=1

b2i ·

∣∣∣∣∣
(
1−

∑n−1
i=1 b

2
i

cρ(n− 2)

)∣∣∣∣∣+
∣∣∣∣∣
∑n−1

i=1 b
4
i

cρ(n− 2)

∣∣∣∣∣ (B.148)

= O(n) ·O(δ/cρ) +O(1) (B.149)

= O(δn/cρ). (B.150)

Q.E.D.

Advantage analysis of M-TD..

Now we analyze the advantage in revenue the miner can get after conducting all the

transaction deletions. Intuitively, we first show that for large n and δ = ω(∆/n), the

condition
∣∣∣∑n

i=1 b
2
i

n
− cρ

∣∣∣ < δ holds with high probability at each step in the ∆ = o(n)

deletions. Then we use Lemma B.5 to bound the advantage.

First, we deduce the following concentration lemma.

Lemma B.6. For any i.i.d. random variable {bi} in [0, 1] satisfying E[b2i ] = cρ and given

δ > 0, we have

Pr
[∣∣∣∣∑n

i=1 b
2
i

n
− cρ

∣∣∣∣ ≥ δ

2

]
≤ 2 exp

(
−δ

2n

2

)
. (B.151)

Proof. Proof. Hoeffding’s inequality [200] states that when {xi} are independent random

variables with li ≤ xi ≤ ri, and denoting sn =
∑n

i=1 xi, it holds that

Pr[|sn − E[sn]| ≥ t] ≤ 2 exp
(
− 2t2∑n

i=1(ri − li)2

)
. (B.152)
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Let xi = b2i , li = 0, ri = 1, t = δn
2

, then E[sn] = cρn and we get:

Pr
[∣∣∣∣∣

n∑
i=1

b2i − cρn

∣∣∣∣∣ ≥ δn

2

]
≤ 2 exp

(
−

1
2
δ2n2

n

)
, (B.153)

i.e.,

Pr
[∣∣∣∣∑n

i=1 b
2
i

n
− cρ

∣∣∣∣ ≥ δ

2

]
≤ 2 exp

(
−δ

2n

2

)
. (B.154)

Q.E.D.

Then we upper bound the impact of transaction deletion on the average of {b2i }. Without

loss of generality, we assume the miner deletes bn, bn−1, · · · , bn−t+1 sequentially4 for t ≤ ∆ =

o(n), and we want that
∣∣∣∑n

i=1 b
2
i

n
−

∑n−t+1
i=1 b2i
n−t+1

∣∣∣ ≤ δ
2
.

In fact, we have bi ∈ [0, 1], so

∑n
i=1 b

2
i

n− t+ 1
≤
∑n−t+1

i=1 b2i
n− t+ 1

≤ (
∑n

i=1 b
2
i )− t

n− t+ 1
(B.155)

Therefore, for t ≤ ∆, There exists constant CMIC1 s.t. for n ≥ CMIC1
∆
δ

and n− t+1 ≥ 3,

we indeed have

∣∣∣∣∣
∑n

i=1 b
2
i

n
−
∑n−t+1

i=1 b2i
n− t+ 1

∣∣∣∣∣ ≤ δ

2
. (B.156)

Combined with Lemma B.5, we deduce that when n ≥ CMIC1
∆
δ

, with probability at least

1− 2 exp (δ2n/2), the advantage of M-TD with t deletions is at most O(δ) · Hkt
cρn

. We also see

that when we require δ ∈ (0, 1], then because ∆ ≥ 1, n− t+ 1 ≥ 3 is guaranteed. Formally:

4Notice that the argument holds for any subset and order of deletion, via re-permutations of {bi}.
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Theorem B.3 (Our mechanism is almost-{M-TD}-proof). Denote B−
∆(b) as the family of all

bidding vectors generated via deleting at most ∆ bids from b. Then for universal constant
CMIC1 > 0 and δ ∈ (0, 1], n ≥ CMIC1

∆
δ

, we have

Pr
b

[
sup

b′∈B−
∆(b)

(
r̃(b′)− r̃(b)

)
> O(δ)

Hk∆

cρn

]

≤ 2 exp
(
−δ2n

2

)
. (B.157)

Advantage analysis of M-FT..

Finally we analyze the miner advantage of the miner’s injection of fake transactions. The

advantage a miner can get consists of two parts: increase of the miner revenue r̃(·), and the

utility of fake identities. We notice that the robustness analysis of r̃(·) not only holds for

transaction deletion, but also injection. So we can upper bound the miner advantage in the

immediate revenue via very similar arguments. Formally, we have (proof omitted):

Corollary B.1. Denote B∆(b) as the family of all bidding vectors generated via injecting

and deleting a total of at most ∆ bids to/from b. Then for universal constants

CM0, CM0′ , CMIC2, CMIC3 > 0 and δ ∈ (0, 1], n ≥ CMIC2
∆
δ

,

Pr
b

[
sup

b′∈B∆(b)
(r̃(b′)− r̃(b)) > CM0δ

Hk∆

cρn

]
≤ CM0′ exp

(
−CMIC3δ

2n
)
. (B.158)

Hence, we only need to further upper bound the advantage from the utility of fake

identities. We notice that the fake transactions do not have intrinsic values, so the valuations

of fake transactions are zero.

Now we consider the total utility of fake identities. Because the valuations are zero, their

total utility are just the opposite of their payment. So for b′j ∈ b′\b, the utility of identity
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j′ is

ũj(b
′
j, b′

−j; 0)

= −aj(b′j, b′
−j)p̃j(b

′
j, b′

−j) (B.159)

= −aj(b′j, b′
−j)pj(b

′
j, b′

−j)− θj(b′j, b′
−j). (B.160)

From Eq. (B.122)5, and denote that the number of bids in b′ is n′ ∈ [n−∆, n+∆], we get:

aj(b
′
j, b′

−j)pj(b
′
j, b′

−j) = Θ

(
kb′j

2

n

)
. (B.161)

From h = Hk
n′ we get:

θj(b
′
j, b′

−j) = −
Hk

2n
b′j

2

( ∑
i ̸=j b

′
i
2

cρ(n′ − 1)
− 1

)
(B.162)

Similar to the argument in Appendix B.4.5, as long as cρ = Θ(1) and
∣∣∣∑n

i=1 b
2
i

n
− cρ

∣∣∣ <
O(δ), we have

∣∣∣∑i ̸=j b
′
i
2

cρ(n′−1)
− 1
∣∣∣ ≤ O(δ/cρ) for any (b′ ∈ B∆(b), j ∈ b′\b), which happens with

probability at least 1− exp(−Θ(δ2n)).

In this case, we have:

∣∣θj(b′j, b′
−j)
∣∣ ≤ O(δ) · Hk

cρn
. (B.163)

5let λ0 = 1.582 and compute f(λ0),m accordingly.
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Therefore, with probability at least 1− exp(−Θ(δ2n)), for any b′ ∈ B∆(b)

∑
b′j∈b′\b

ũj(b
′
j, b′

−j; 0)

=
∑

b′j∈b′\b

−aj(b′j, b′
−j)pj(b

′
j, b′

−j)− θj(b′j, b′
−j) (B.164)

=
∑

b′j∈b′\b

(
−Θ

(
kb′j

2

n

)
+O(δ) · Hk

cρn

)
(B.165)

≤
∑

b′j∈b′\b

O(δ) · Hk
cρn

(B.166)

≤ O(δ) · Hk∆
cρn

. (B.167)

Combined with Corollary B.1, we deduce that for universal constants CM0, CMIC2, CMIC3 >

0, CM0′ > 1 and δ ∈ (0, 1], n ≥ CMIC2
∆
δ

,

Pr
b

 sup
b′∈B∆(b)

r̃(b′)− r̃(b) +
∑

b′j∈b′\b
ũj(b

′
j , b′

−j ; 0)


> CM0δ ·

Hk∆

cρn

 < CM0′ exp(−CMIC3δ
2n). (B.168)

Particularly, we can let δ = (∆/n)1/3, then for n ≥ C
3/2
MIC2∆,

Pr
b

 sup
b′∈B∆(b)

r̃(b′)− r̃(b) +
∑

b′j∈b′\b
ũj(b

′
j , b′

−j ; 0)


> CM0

Hk∆4/3

cρn4/3

 < CM0′ exp(−CMIC3∆
2/3n1/3). (B.169)

Therefore, because ∆ ≥ 1, for any ϵ > 0 when n ≥ max{C3/2
MIC2∆, C

−3
MIC3 log3 CM0′

ϵ
}, we
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have

Pr
b

 sup
b′∈B∆(b)

r̃(b′)− r̃(b) +
∑

b′j∈b′\b
ũj(b

′
j , b′

−j ; 0)


> CM0

Hk∆4/3

cρn4/3

 < ϵ. (B.170)

For ϵ ∈ (0, 1/2), we have

log CM0′

ϵ
= logCM0′ + log 1

ϵ

= log 1

ϵ

(
1 +

logCM0′

log 1
ϵ

)
< log 1

ϵ

(
1 +

logCM0′

log 2

)
.

Just let CM1 = C
3/2
MIC2, CM2 = C−3

MIC3

(
1 +

logCM0′
log 2

)3
, and from H = Lcρ, we have proven

Theorem 4.5.

B.4.6 Proof of Theorem 4.6

For convenience we let t = |b| − 1. Denote M(a, p, r) and T (θ, r̃) is the auxiliary-variation

decomposition of an 1-SCP mechanism M̃ , then from Lemma 4.1 and Lemma B.3 we know

that

θi(bi, b−i)− θi(0, b−i) = r̃(bi, b−i)− r̃(0, b−i). (B.171)

User i’s utility in M̃ is

ũ(bi, b−i; vi)

= ai(bi, b−i)(vi − pi(bi, b−i))− θi(bi, b−i) (B.172)

= u(bi, b−i; vi)− θi(bi, b−i). (B.173)
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From U-BNIC of M̃ we know that Eb−i
[ũ(bi + δ, b−i; bi)] ≤ Eb−i

[ũ(bi, b−i; bi)] and

Eb−i
[ũ(bi, b−i; bi + δ)] ≤ Eb−i

[ũ(bi + δ, b−i; bi + δ)], i.e.,

Eb−i
[u(bi, b−i; bi)− θi(bi, b−i)]

≥ Eb−i
[u(bi + δ, b−i; bi)− θi(bi + δ, b−i)] (B.174)

Eb−i
[u(bi, b−i; bi + δ)− θi(bi, b−i)]

≤ Eb−i
[u(bi + δ, b−i; bi + δ)− θi(bi + δ, b−i)]. (B.175)

From U-BNIC (implied by U-DSIC) of M we get:

Eb−i
[u(bi, b−i; bi)] ≥ Eb−i

[u(bi + δ, b−i; bi)] (B.176)

Eb−i
[u(bi, b−i; bi + δ)] ≤ Eb−i

[u(bi + δ, b−i; bi + δ)]. (B.177)

By integration on bi for fixed b−i, we know that

Eb−i
[θi(bi, b−i)]− Eb−i

[θi(0, b−i)] = 0. (B.178)

From NFL we know that θi(0, b−i) = 0, so

Eb−i
[θi(bi, b−i)] = 0. (B.179)

Combined with Eq. (B.171), we know that

Eb−i
[r̃(bi, b−i)− r̃(0, b−i)] (B.180)

= Eb−i
[θi(bi, b−i)− θi(0, b−i)] (B.181)

= Eb−i
[θi(bi, b−i)] = 0. (B.182)
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From assumption we know that Eb−i
[r(0, b−i)] ≤ Eb−i

[r(b−i)], so we have

Eb[r̃(bi, b−i)] = Ebi [Eb−i
[r̃(bi, b−i)]] (B.183)

= Ebi [Eb−i
[r̃(0, b−i)]] ≤ Ebi [Eb−i

[r̃(b−i)]] (B.184)

= Eb−i
[r̃(b−i)]. (B.185)

Hence the expected revenue for t+1 users is at most the expected revenue for t users. We

notice that when there is zero user the expected revenue is non-positive, so by induction,

the expected revenue for arbitrary n users is non-positive.

B.4.7 Proof of Theorem 4.7

Necessity. Let ∀bi = 1, then it has already been shown that r̃(b) = Θ(k)
(
1− 1

2cρ

)
. If

cρ <
1
2
, then in this case r̃(b) < 0, violating MIR.

Sufficiency. Because ∀bi ∈ [0, 1], we have b2i ≥ b4i . Therefore,

r̃(b) = Θ

(
k

n

)
·

(
n∑

i=1

b2i −
∑

1≤i<j≤n b
2
i b

2
j

cρ(n− 1)

)
(B.186)

≥ Θ

(
k

n

)
·

(
n∑

i=1

b4i −
∑

1≤i<j≤n b
2
i b

2
j

cρ(n− 1)

)
(B.187)

= Θ

(
k

n

)
·

((
1− 1

2cρ

) n∑
i=1

b4i

+
1

4cρ(n− 1)

n∑
i=1

(
b2i − b2j

)2)
. (B.188)

If cρ ≥ 1
2
, then 1− 1

2cρ
≥ 0, so r̃(b) is lower bounded by a sum of squares. Therefore, r̃(b)

is non-negative for any b ∈ [0, 1]n, proving the MIR property of the mechanism.
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B.4.8 Proof of Theorem 4.8

We have that

r̃(b) = h

2
·

(
n∑

i=1

b2i −
∑

1≤i<j≤n b
2
i b

2
j

cρ(n− 1)

)
(B.189)

=
h

2
·

 n∑
i=1

b2i −
1

2cρ(n− 1)

( n∑
i=1

b2i

)2

−
n∑

i=1

b4i

 . (B.190)

By the Cauchy–Schwarz inequality, we have (
∑n

i=1 b
4
i ) · (

∑n
i=1 1) ≥ (

∑n
i=1 b

2
i )

2, i.e.,

n∑
i=1

b4i ≥
1

n

(
n∑

i=1

b2i

)2

. (B.191)

Therefore,

r̃(b) ≥ h

2

 n∑
i=1

b2i −
1

2cρn

(
n∑

i=1

b2i

)2
 (B.192)

=
h

2

n∑
i=1

b2i

(
1− 1

2cρn

n∑
i=1

b2i

)
(B.193)

=
hcρn

4

1− 1

c2ρn
2

(
n∑

i=1

b2i − cρn

)2
 . (B.194)

We know that E[r̃(b)] = hcρn

4
, so

r̃(b)
E[r̃(b)] ≥ 1− 1

c2ρn
2

(
n∑

i=1

b2i − cρn

)2

. (B.195)

Hoeffding’s inequality [200] states that when {xi} are independent random variables with

li ≤ xi ≤ ri, and denoting sn =
∑n

i=1 xi, it holds that

Pr[|sn − E[sn]| ≥ t] ≤ 2 exp
(
− 2t2∑n

i=1(ri − li)2

)
. (B.196)
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We let xi = b2i , li = 0, ri = 1, t =
√

λn
2

, and get:

Pr
[∣∣∣∣∣

n∑
i=1

b2i − cρn

∣∣∣∣∣ ≥
√
λn

2

]
≤ 2 exp(−λ). (B.197)

Combined with Eq. (B.195), we get:

Pr
[
r̃(b)

E[r̃(b)] ≤ 1− λ

c2ρn

]
≤ 2 exp(−λ). (B.198)
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APPENDIX C

APPENDIX FOR CHAPTER 5

C.1 Computation of Prover’s Sunk Cost µ(ρ) on Losing
Competition

Define P−(t) as the probability that another prover would have finished the computation by

the time the fixed prover computes a t portion of the task. Then by definition, we have

P−(t) = 1− P (t). (C.1)

Denote X as the random variable of the portion the fixed prover has done to the task

when another prover would submit the work, then P−(·) is essentially the CDF of X, and

the PDF of X is P ′
−(·).

Given that the fixed prover would stop computing when some other prover submits the

task, we get that
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µ(ρ)

M
= E[X|X < ρ] (C.2)

=
E[X · 1[X<ρ]]

Pr[X < ρ]
(C.3)

=

∫ ρ

0
tP ′(t)dt

1− P (ρ)
(C.4)

=

∫ ρ

0

∫ t

0
P ′
−(t)dxdt

1− P (ρ)
(C.5)

=

∫ ρ

0

∫ ρ

t
P ′
−(t)dtdx

1− P (ρ)
(C.6)

=

∫ ρ

0
(P−(ρ)− P−(x))dx

1− P (ρ)
(C.7)

=

∫ ρ

0
(P (x)− P (ρ))dx

1− P (ρ)
(C.8)

=

∫ ρ

0
P (x)dx− ρP (ρ)
1− P (ρ)

. (C.9)

Therefore,

µ(ρ) =

∫ ρ

0
P (x)dx− ρP (ρ)
1− P (ρ)

M. (C.10)

C.2 Discussion on Reward Design for Multiple Verifiers

In the prover’s reward design in Section 5.7, we decide on the acceptance or rejection of

the proof based on the majority vote of verifiers, and only pay partial rewards v
n
R to the

prover, instead of the full reward R, if v ∈ (n
2
, n) verifiers accept the proof. In this section,

we discuss the rationale of this rule.

C.2.1 Majority Vote or One-Vote-Veto?

Assuming that the verifiers are honest, we can see that when any verifier rejects the proof, its

certain that the proof is dishonest. Hence, in the case of honest verifiers, the one-vote-veto
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rule can optimize the decision-making of the mechanism.

However, in the case where the verifiers may be dishonest, the one-vote-veto rule could

render the mechanism vulnerable, as even one all-reject verifier can manipulate the system

to reject all proofs. Hence, it is more robust to make the system reject the proof only when

more than one verifier rejects it.

While other rules, e.g., two-vote-veto may also work or even work better in certain

scenarios, we leave the detailed discussions in future work and use the simplest majority

vote for the decision-making.

C.2.2 Why Partial Rewards?

If the prover gets the full rewards whenever the proof is rejected, then the prover may benefit

from “slight” cheats as the probability to be caught by a majority of verifiers is sub-linearly

low. For example, if there are n = 1000 stages in which α = 50 stages are verified, and the

prover cheats for the 1 stage (disguised as a random flag), saving 1
1000

computational power,

then each verifier has an independent 1
40

probability to detect the cheat. If there is only one

verifier, the probability that the proof is rejected is 1
40

.

Then we consider the majority vote of 5 verifiers. The probability that the proof is rejected

is:

5∑
i=3

(
5

i

)(
1

40

)i(
39

40

)5−i

≈ 0.00015 <
1

1000
.

Hence, the mechanism is no longer BIS. The rationale is that if the prover cheats a δ → 0

fraction of the proof, then each verifier has a Θ(αδ) probability to detect the cheat. Hence

in a (2z − 1)-player majority vote, the probability of rejection is Θ
((

2z−1
z

)
(αδ)

)
= o(δ),

rendering the mechanism not BIS for the case that δ is small enough.

On the other hand, in the Proportional Rule, it can be regarded that each verifier’s report

independently contributes to a 1
2z−1

fraction of the prover’s reward, so that the prover’s

reward is the same as the case of only 1 verifier, hence it is BIS as long as the basic 1-verifier

mechanism is BIS.
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In the Strict-Proportional Rule, the prover’s reward is always no greater than in the

Proportional Rule, with the equality holding at δ = 0. Hence, cheating provers get less

rewards while honest provers get the same, so it is also BIS as long as the basic 1-verifier

mechanism is BIS.

C.3 Experiments on Verifiers’ Incentives

We consider the case of α = 50 that the mechanism almost always makes the correct decision,

as shown in Section 5.7, and we set the expected verification reward to be 2 times the

verification cost of honest proofs. We can expect that there is an overwhelming probabilities

that other players are honest. Hence, we assume that other 4 of the 5 verifiers are honest,

and the proof is honest with probability pproof ∈ [0, 1] in increments of 0.2; dishonest provers

conduct partial spoof attacks with honest ratio ρ = 0.9 (which is relatively hard to detect).

Then, we run numerical simulations and plot the verifier’s expected utility when she honestly

verifies α′ ∈ [0, 50] stages in Figure C.1.

From Figure C.1 we see that for pproof ≥ 0.4, the CTF protocol incentivizes the verifier to

honestly verify all α = 50 stages via the flag rewards. For low pproof (which is unlikely to occur

due to prover-side incentive-security), the verifier is incentivized to verify fewer stages. The

intuitive explanation is that verification rewards for rejected proofs are irrelevant to flags,

and verifying 20 to 30 stages is already enough to detect the cheats with high probability.

Ablation analysis. To empirically show the necessity of our CTF protocol, we also plot

the verifiers’ utilities in Figure C.2 when we use the basic mechanism (Algorithms 2-3) with

verifiers’ rewards given by simple majority vote. In the figure, we see that particularly for

pproof = 1, the verifier would be incentivized to lazily accept the proof even if all other verifiers

are honest, demonstrating the phenomenon of the Verifier’s Dilemma. Hence, we show the

practical effectiveness and necessity of our CTF protocol for the incentive guarantees on the

verifier’s side.
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Figure C.1: Verifier’s Utility

Figure C.2: Verifier’s Utility without CTF Protocol

C.4 Discussions on Malicious Provers and Anomaly Detection

Throughout the paper, we mainly consider the scenario in which strategic provers are

motivated solely by the block rewards for the training task, with their utility defined as the

block reward minus computational costs. Nevertheless, in reality, there are indeed malicious

trainers who may have incentives to adversarially sabotage the model for their own benefit

[109]. While a detailed investigation of such cases is deferred to future work, we discuss here

how our mechanism could be augmented for resilience against such malicious trainers.

216



C.4.1 Upper Bounds on Dishonest Stages

To circumvent the PoL Trilemma (as discussed in Section 5.1), our mechanism relaxes the

requirement of Byzantine security to incentive security. In essence, we no longer demand

that the mechanism be “absolutely secure” against all attacks. Instead, we only require

it to be “secure enough” so that an attack is detected with sufficiently high probability to

deter rational players from attacking. Consequently, for an attack that is “less severe” and

yields small utility to the attacker, even a relatively small detection probability can suffice

to ensure incentive security.

A potential concern with this model is the possible underestimation of the incentives

to attack, as malicious players may have external motivations to benefit from training an

incorrect model. In that case, an attacker might still find it worthwhile to mount an attack

if the benefits from corrupting the model outweigh the lost block rewards, provided that a

dishonest PoL can pass verification with non-negligible probability. Nonetheless, while our

security notion is relaxed, it still essentially preserves Byzantine security in most practical

settings: as long as the number of dishonest stages is not too small, our mechanism can

detect the attack with overwhelming probability. Formally,

Proposition C.1. In our full mechanism of Algorithms 4-5, if the prover cheats in more

than 2T
α

ln 1
ϵ

stages, then the probability of passing verification (by one verifier) is at most ϵ.

The proof of Proposition C.1 is deferred to Appendix C.5.6. From the proposition, we

see that our mechanism effectively preserves Byzantine security against attacks involving

more than Θ
(
T
α

)
dishonest stages. Therefore, if compromising only a small number of stages

cannot substantially degrade the trained model, then any model that passes verification in

our PoL mechanism can be considered effectively correct.

In particular, if we set α = Θ(T ) (i.e., allowing a constant-ratio overhead in the

mechanism), then an adversary can only corrupt a constant number of stages with a non-

negligible probability of passing the verification.
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C.4.2 Approaches for Anomaly Detection

From the above discussion, we demonstrate that our mechanism effectively limits the number

of dishonest stages in a PoL that can pass verification. Consequently, if we can ensure that

each dishonest stage is unable to significantly corrupt the output model, we can guarantee

the correctness of the trained model even in the presence of (potentially irrational) malicious

provers.

Most existing work addressing this issue falls in the scope of anomaly detection, whose

primary aim is to detect significant errors at low cost [145]. In the context of PoL, we want

to ensure that the weight updates from dishonest stages do not deviate excessively from the

correct updates, so that the final model remains close to one trained honestly. Although

more sophisticated approaches may exist, a simple strategy is to monitor the magnitudes of

weight updates: under the smoothness conditions typical of many ML problems, gradients

are not expected to grow arbitrarily large. Therefore, if verifiers observe unexpectedly large

updates in certain stages, they would prioritize verifying those stages to detect potential

attacks (similar to [96]).

Nevertheless, in our original PoL mechanism, the verifier does not receive model

weights until they select which stages to verify and obtain the corresponding weights

from the prover, thus saving communication costs. To address this limitation, the PoL

certificate can be augmented with a compressed representation of the model weights that

approximates the relevant distance information. According to the Johnson–Lindenstrauss

lemma (Lemma C.1), this representation can be realized via a random low-dimensional

projection. The projection direction is determined by the hash of the original PoL certificate,

ensuring that it cannot be manipulated or known in advance before the training is completed.

Lemma C.1 (Johnson–Lindenstrauss). Let X be a set of n points in RD. Consider a

random projection from RD to Rd where d = Θ
( logn

ϵ2

)
. With high probability, this projection

preserves all pairwise Euclidean distances in X up to a multiplicative factor of (1±O(ϵ)).

With this augmentation, we propose an approach to limit the effects of each dishonest

stage to the output model, in order to ensure the model correctness in our PoL mechanism.

We leave the detailed implementation and analysis for future work.
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C.5 Omitted Proofs

C.5.1 Proof of Theorem 5.1

Assume we have such a mechanism. By the definition of Nash equilibrium, we consider a

fixed verifier. Given that the prover and all other verifiers (if exist) act honestly, that verifier

should be incentivized to do the honest verification.

Since the prover is honest, when that verifier performs honest verification, the result should

always be “Success”. However, if the verifier simply reports “Success” without verification,

the outcome is the same but the verifier saves the verification cost, so that the verifier is

incentivized to deviate from the honest strategy.

That leads to a contradiction. So no such mechanism exists.

C.5.2 Proof of Theorem 5.2

Notice that if the verifier verifies at least one stage, then she has a computational cost of M
T

.

If v+ ≤ v0, then the verifier does not have any incentive to find a cheat, so her strict

optimal strategy is reporting “Success”. Now we assume v+ > v0.

If the verifier verifies at least one stage, then as the probability that the proof is dishonest

is at most ϵ, she catches a cheat with a probability upper bounded by ϵ. Therefore, her

expected utility is at most v+ϵ+ v0(1− ϵ)− M
T

.

If the verifier just report “Success”, her utility is v0.

Since ϵ < M
T (v+−v0)

, we have

v0 > v+ϵ+ v0(1− ϵ)−
M

T
. (C.11)

Therefore the verifier’s strict optimal strategy is to report “Success” without actual

verification.

C.5.3 Proof of Theorem 5.3

We assume α ≥ 2. From Eq. 5.6 and Q(1) = 1 we see that
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u(1) = P (1)R−
∫ 1

0

P (x)dx ·M. (C.12)

So Eq. (5.12) implies that u(1) > 0, i.e. the mechanism is IR. From P (x) ≥ P (1) we also

deduce that M < R, i.e. the reward must be greater than the honest computation cost.

Now we estimate Q(ρ) for ρ ∈ [0, 1).

Since each cheating stage has an independent κ probability to be caught when verified, we

can equivalently model that the verification of each stage has an independent κ probability

to be effective. In other words, a cheating stage is caught if and only if it is verified and the

verification happens to be effective.

Then, we denote α# as a random variable of the total number of effectively verified stages.

Hence we have:

Pr[α# = s] =

(
α

s

)
κs(1− κ)α−s. (C.13)

For the total of T stages, there are ρT stages trained honestly, and Q(ρ) is the probability

that all α# effectively verified stages are honest. Denote Qs(ρ) as the conditional probability

that the proof passes the verification given α# = s, then

Qs(ρ) =

(
ρT
s

)(
T
s

) (C.14)

=
ρT (ρT − 1) · · · (ρT − s+ 1)

T (T − 1) · · · (T − s+ 1)
(C.15)

≤ ρT (ρT − ρ) · · · (ρT − (s+ 1)ρ)

T (T − 1) · · · (T − s+ 1)
(C.16)

= ρs. (C.17)

Therefore, we have
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Q(ρ) =
α∑

s=0

Pr[α# = s]Qs(ρ) (C.18)

≤
α∑

s=0

(
α

s

)
κs(1− κ)α−sρs (C.19)

=
α∑

s=0

(
α

s

)
(κρ)s(1− κ)α−s (C.20)

= (1− κ+ κρ)α. (C.21)

Let γ = 0, from Eq. (5.6) we see that

u(ρ) = P (ρ)(Q(ρ)− γ(1−Q(ρ)))R−
∫ ρ

0

P (x)dx ·M (C.22)

≤ (1− κ+ κρ)αP (ρ)R−
∫ ρ

0

P (x)dx ·M, (C.23)

with equality holding at ρ = 1.

Now we define β = M
R
∈ (0, 1)and

u(ρ) = (1− κ+ κρ)αP (ρ)− β
∫ ρ

0

P (x)dx. (C.24)

Notice that P (·) is a non-increasing function, so for x ∈ [0, ρ], P (x) ≥ P (ρ). Hence, we

have

u(ρ) = (1− κ+ κρ)αP (ρ)− β
∫ ρ

0

P (x)dx (C.25)

≤ (1− κ+ κρ)αP (ρ)− β
∫ ρ

0

P (ρ)dx (C.26)

= ((1− κ+ κρ)α − βρ)P (ρ). (C.27)

Since ρ is defined as the fraction of honest stages, which in practice must be multiples of
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1
T

, we only need to prove that if Eqs. (5.12)-(5.13) hold, then

∀ρ ∈ {0} ∪ [
1

T
, 1), u(ρ) < u(1). (C.28)

Now we prove (C.28) for ρ = 0, ρ ∈ [ 1
T
, 1
2
], and ρ ∈ (1

2
, 1), respectively.

(i) Case of ρ = 0.

Since ρ = 0, we have u(0) = (1−κ)αP (0) = (1−κ)α. From (5.12) we see that u(0) < u(1).

(ii) Case of ρ ∈ [ 1
T
, 1
2
].

From (C.27) we only need to prove (1− κ+ κρ)α − βρ ≤ 0 to deduce u(ρ) ≤ 0 < u(1).

Define

ψ(ρ) = (1− κ+ κρ)α − βρ.

From α ≥ 2 we get ψ′′(ρ) = (1 − κ + κρ)α−2 ≥ 0, so ϕ(·) is concave and we only need to

show ψ( 1
T
) ≤ 0 and ψ(1

2
) ≤ 0.

Actually, for ρ ∈
[
1
T
, 1
2

]
we have

ψ (ρ) = (1− κ+ κρ)α − βρ (C.29)

≤
(
1− κ+

κ

2

)α
− β

T
(C.30)

≤ e−
κ
2
α − β

T
(C.31)

≤ e−
κ
2
·
2 ln T

β
κ − β

T
(C.32)

≤ e− ln T
β − β

T
(C.33)

= 0. (C.34)

(iii) Case of ρ ∈ (1
2
, 1).

From Eq. (C.24) we get

u′(ρ) = ακ(1− κ+ κρ)α−1P (ρ) + (1− κ+ κρ)αP ′(ρ)− βP (ρ). (C.35)

From Eq. (5.11) we have P ′(ρ) ≥ −λP (ρ), hence
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u′(ρ) ≥ ακ(1− κ+ κρ)α−1P (ρ)− λ(1− κ+ κρ)αP (ρ)− βP (ρ) (C.36)

= ((1− κ+ κρ)α−1(ακ− λ(1− κ+ κρ))− β)P (ρ). (C.37)

Now we define t = 1− κ+ κρ, then we have ρ = t+(1−κ)
κ

and

t ∈ (1− κ

2
, 1). (C.38)

We denote

V (t) = (1− κ+ κρ)α−1(ακ− λ(1− κ+ κρ))− β

= −λtα + ακtα−1 − β,

U(t) = ((1− κ+ κρ)α − βρ)

= tα − β

κ
t+

β(1− κ)
κ

,

then from (C.37) we see that

u′(ρ) ≥ V (t)P (ρ), (C.39)

and from (C.27) we see that

u(ρ) ≤ U(t)P (ρ). (C.40)

For ρ ∈ [1
2
, 1] we define

u(ρ) = u(1)−
∫ 1

ρ

V (1− κ+ κx)P (x)dx,

then
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u
′
(ρ) = V (t)P (ρ) ≤ u′(ρ). (C.41)

and from (C.39) we deduce

u(ρ) = u(1)−
∫ 1

ρ

u
′
(x)dx (C.42)

≥ u(1)−
∫ 1

ρ

u′(x)dx (C.43)

= u(ρ). (C.44)

From (5.13) we have α ≥ 2(λ+β)
βκ
≥ λ

κ
+ 1, thus we get

V ′(t) = αtα−2((α− 1)κ− λt) (C.45)

≥ αtα−2(λ− λt) (C.46)

≥ 0. (C.47)

Hence V (t) has at most one zero point on (1
2
, 1), and from (C.41), u(ρ) has at most one

stationary point on (1
2
, 1). Because V (1) = −λ + ακ − β ≥ 0, we deduce that u(ρ) must

satisfy one of the following:

• Monotonic increasing on (1
2
, 1), or

• Monotonic decreasing on (1
2
, ξ) and increasing on (ξ, 1), in which ξ ∈ (1

2
, 1).

In the first case, it holds that u(ρ) ≤ u(ρ) < u(1) = u(1) for ρ ∈ (1
2
, 1) and we prove

(C.28). Now we consider the second case.

Since u(ρ) is increasing on (ξ, 1), we see that ∀ρ ∈ [ξ, 1), u(ρ) ≤ u(ρ) < u(1) = u(1). On

the other hand, when ρ ∈ (1
2
, ξ), we prove that u(ρ) ≤ 0.

Actually, because u(·) is decreasing at ρ ∈ (1
2
, ξ), we deduce that u′(ρ) ≤ 0, thus from

(C.41) we have V (t) ≤ 0.

224



Additionally, we have

tV (t)− ακU(t) (C.48)

= (−λtα+1 + ακtα − βt)− (ακtα − αβt+ αβ(1− κ)) (C.49)

= −λtα+1 − βt+ αβt− αβ(1− κ) (C.50)

= αβ(t+ κ− 1)− (λtα+1 + βt). (C.51)

From (5.13) we have α ≥ 2(λ+β)
βκ

, and from (C.38) we have 1− κ
2
< t < 1. Therefore,

tV (t)− ακU(t) > 2(λ+ β)

βκ
β
(
1− κ

2
+ κ− 1

)
− (λ+ β) (C.52)

=
2(λ+ β)

κ
· κ
2
− (λ+ β) (C.53)

= 0. (C.54)

Combined with V (t) ≤ 0, we deduce that U(t) ≤ 0, and from (C.40) we get u(ρ) ≤ 0 <

u(1).

Here we finish the proof for all three cases of (C.28). Now we have proven Theorem 5.3.

C.5.4 Proof of Theorem 5.4

It is straightforward to see that Eq. (5.14) holds if and only iff the mechanism is IR. Similar

to the proof in Appendix C.5.3, we have

u(ρ) = P (ρ)(Q(ρ)− γ(1−Q(ρ)))R−
∫ ρ

0

P (x)dx ·M (C.55)

≤ ((1 + γ)(1− κ+ κρ)α − γ)P (ρ)R−
∫ ρ

0

P (x)dx ·M. (C.56)

Hence, we can similarly define

u(ρ) = ((1 + γ)(1− κ+ κρ)α − γ)P (ρ)− β
∫ ρ

0

P (x)dx, (C.57)
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and only need to prove that

u(ρ) < u(1), ρ ∈ [0, 1).

For Eq. (C.57) we see that

(1− κ+ κρ)α ≤ γ

1 + γ
⇒ u(ρ) ≤ 0. (C.58)

Now we consider two cases of (1− κ)α < γ
1+γ

and (1− κ)α ≥ γ
1+γ

separately.

(i) Case of (1− κ)α < γ
1+γ

.

In this case, we define ρth =
( γ
1+γ

)
1
α+κ−1

κ
, then for ρ ∈ [0, 1], we have

ρ ≤ ρth ⇐⇒ (1− κ+ κρ)α ≤ γ

1 + γ
. (C.59)

From Eq.(C.58) and IR guarantee we have that u(ρ) ≤ 0 < u(1) when ρ ∈ [0, ρth]. Now

we consider ρ ∈ (ρth, 1).

From Eq.(C.57) we have

u′(ρ) = ακ(1 + γ)(1− κ+ κρ)α−1P (ρ)

+ ((1 + γ)(1− κ+ κρ)α − γ)P ′(ρ)− βP (ρ) (C.60)

≥ ((1 + γ)(ακ(1− κ+ κρ)α−1

− λ(1− κ+ κρ)α) + λγ − β)P (ρ) (C.61)

= ((1 + γ)(1− κ+ κρ)α−1(ακ− λ(1− κ+ κρ)) + λγ − β)P (ρ). (C.62)

From (5.15) we have ακ ≥ λ, hence

ακ− λ(1− κ+ κρ) ≥ 0. (C.63)

From Eq. (C.59) and 1− κ+ κρ ∈ [0, 1], we have
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ρ > ρth ⇒ (1− κ+ κρ)α ≥ γ

1 + γ

⇒ (1− κ+ κρ)α−1 ≥ γ

1 + γ
.

Therefore, for ρ ∈ (ρth, 1), we have

u′(ρ) ≥ ((1 + γ) · γ

1 + γ
· (ακ− λ(1− κ+ κρ)) + λγ − β)P (ρ) (C.64)

= (γ(ακ− λ(1− κ+ κρ)) + λγ − β)P (ρ) (C.65)

≥ (γ(ακ− λ) + λγ − β)P (ρ) (C.66)

= (αγκ− β)P (ρ). (C.67)

From 5.15 we have α > β
γκ

, and as γ, κ > 0, we have αγκ− β>0, hence u′(ρ) > 0.

Therefore, u(·) is monotonic increasing on (ρth, 1), deducing that u(ρ) < u(1) for ρ ∈

(ρth, 1).

(ii) Case of (1− κ)α ≥ γ
1+γ

.

In this case, we have (1− κ+ κρ)α ≥ γ
1+γ

for ρ ∈ [0, 1), so it holds that u(·) is monotonic

increasing on [0, 1). Hence, we prove that u(ρ) < u(1) for ρ ∈ [0, 1).

C.5.5 Proof of Theorem 5.5

We first assume ϵ = 0. Then, we only need to prove a fact: assuming the prover is honest,

then as long as the verifier has verified less than α stages, she would increase her expected

utility if she verifies one more stage.

Denote α′ ≤ α− 1 as the number of stages the verifier has verified, and she has found m

flags, then m ≤ α′.

Then, among the T − α′ remaining stages not verified yet, there are ηT −m ≥ ηT − α′

flags. Therefore, the probability that the verifier finds a flag in an additional stage is
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p =
ηT −m
T − α′ >

ηT − α
T

. (C.68)

Since η ≥ 2α
T

, we have α ≤ ηT
2

, so it holds that

p >
ηT/2

T
=
η

2
. (C.69)

If the verifier finds a flag, according to the CTF protocol, she re-trains the stage with two

different seeds, taking a computational cost of 2M
T

and gaining a reward of R1. If she does

not find a flag, she re-trains the stage with one seed, taking a computational cost of M
T

and

getting no reward. Hence, the expected gain of the utility in verifying an additional stage is

∆u = p

(
R1 −

2M

T

)
− (1− p)M

T
(C.70)

= p

(
R1 −

M

T

)
− M

T
. (C.71)

From Eq. (5.17), we have

∆u ≥ p

(
M

T

(
2

η
+ 1

)
− M

T

)
− M

T
(C.72)

=
M

T
·
(
2

η
p− 1

)
(C.73)

>
M

T
·
(
2

η
· η
2
− 1

)
(C.74)

= 0. (C.75)

Hence, the verifier would always gain additional expected utility via verifying an additional

stage as long as α′ < α. On the other hand, the verifier only has access to α stages in tve.

Hence, given that the prover is honest, the verifier would maximize her expected utility when

she honestly verifies all stages she requests.

Since the inequalities are strict, and the utilities are continuous functions of ϵ, it also holds
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for any ϵ small enough. Therefore, the mechanism is VIS.

C.5.6 Proof of Proposition C.1

From Eq. (C.21) in Appendix C.5.3, denoting ρ as the fraction of honestly trained stages,

the probability of passing the verification is

Q(ρ) ≤ (1− κ+ κρ)α. (C.76)

In our full mechanism we have κ = 1
2
, and denote ∆ as the number of dishonest stages,

then we have ρ = 1− ∆
T

. Hence, we deduce that

Q(ρ) ≤
(
1− ∆

2T

)α

(C.77)

≤ e−
α
2T

·∆. (C.78)

Since ∆ ≥ 2T
α

ln 1
ϵ
, we have

Q(ρ) ≤ e−
α
2T

· 2T
α

ln 1
ϵ (C.79)

= e− ln 1
ϵ (C.80)

= ϵ. (C.81)
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APPENDIX D

APPENDIX FOR SECTION 6

D.1 Introduction of Decentralized AI Verification Protocols

Amid the rapid development of AI technologies in the LLM era, decentralized AI (DeAI) has

emerged as a promising paradigm that aims to deploy AI infrastructure on decentralized

platforms such as blockchains [149]. A key motivation behind DeAI is to ensure the

trustworthiness of AI systems—specifically, to verify that training and inference processes

are faithfully executed and free from adversarial tampering.

In addition to mitigating the risk of malicious attacks on AI models [109], DeAI also

addresses growing concerns about AI safety [102]. While much of the existing AI safety

literature focuses on internal risks—particularly issues of alignment [201, 202]—these

approaches typically assume that the models are correctly trained and executed. However,

due to the black-box nature of AI models, external risks arise—namely, that model developers

may have incentives to manipulate the system for their own benefit, especially when model

outputs influence high-stakes decisions. Thus, verifying and certifying the integrity of AI

models—that they are properly trained and function as intended—is essential.

Centralized AI corporations may be incentivized to manipulate AI systems in the absence

of transparency. In contrast, decentralized verification offers a trustless approach to ensure

model integrity. Therefore, DeAI plays a crucial role in mitigating external risks by ensuring

model integrity through decentralized technologies [203].

From a methodological perspective, existing approaches to decentralized verification of AI

models can be broadly categorized into two types: cryptographic and game-theoretic methods.

Cryptographic methods aim to provide strong, provable guarantees of training and inference

integrity, typically through mechanisms such as zero-knowledge proofs (e.g., zkML, Chen
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et al. [150]) to ensure verifiability without revealing sensitive information. However, these

methods often incur substantial computational overhead (typically exceeding 1000x) which

severely undermines system efficiency and poses a significant barrier to practical deployment,

particularly for large-scale models.

Alternatively, game-theoretic approaches aim to leverage economic incentives to ensure

that all participants (e.g., trainers and verifiers) act honestly as a strategic equilibrium

behavior—namely, that truthful actions constitute a Nash equilibrium.

D.1.1 opML: Optimistic Machine Learning for Model Inference

A representative example is the mechanism of opML (Optimistic Machine Learning, Conway

et al. [130]), which secures the correctness of AI model inference via the Optimistic Rollup

framework [204]. In this context, the term “optimistic” refers to the principle that all

submitted computations are presumed valid unless proven otherwise. Verifiers are thus

incentivized to verify the outputs and are rewarded for successfully identifying incorrect

computations.

Specifically, when a verifier verifies a submitted ML task, they re-execute the computation

and compare the results:

• If the results match, the task is accepted as valid.

• If the results do not match, a committee voting procedure is invoked, wherein a

designated committee determines the validity of the task through majority vote.

Economic issues. Due to the optimistic assumption of correctness, it is essential that

verifiers in opML are sufficiently incentivized to invest the necessary computational resources

for verification. Hence, the mechanism should reward the efforts verifiers make to offset the

computational cost.

Assuming that the opML mechanism works as expected, we can expect that most provers

act honestly and an overwhelming majority of submitted computations are valid. Then, we

may expect a lazy verifier to accept every proof without actual verification, unless the reward

for detecting an invalid proof makes a difference.
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To simplify the discussion, we assume that the committee voting can always correctly

determine if the proof is valid. From the perspective of the verifier,

• If she acts honestly, she accepts a valid proof with (1 − ϵ) probability and detects an

invalid proof with ϵ probability.

• If she acts lazily, she accepts a valid proof with (1 − ϵ) probability and accepts an

invalid proof with ϵ probability.

We see that the outcomes only differs in the scenario that the prover cheats, which

comes with a small probability of ϵ. Hence, if the verification cost is C, the reward R

of detecting and penalty L for failing to detect must sum up to R + L ≥ C
ϵ

to incentivize

honest verification. Actually, Conway et al. [130] show that for given {R,L,C}, the protocol

would suffer an ϵ = C
R+L

rate of invalid computation at Nash equilibrium, which resembles

the Verifier’s Dilemma and undermines the trustworthiness of the ecosystem particularly

when the verification cost C is substantial.

Attention challenges. To address the Verifier’s Dilemma, Conway et al. [130] propose

a mechanism known as attention challenges, which operates as follows. Suppose the prover

has address As and the output is f(x):

• The prover first reveals the hash value H(f(x), As) and issues a challenge to all verifiers

v such that H(f(x), Av) < T , where Av is the address of verifier v and T is a predefined

threshold.

• After a fixed time window, the prover reveals the full output f(x) and computes

H(f(x), Av) for each verifier. Any verifier for whom H(f(x), Av) < T but who did not

respond is marked as non-participating.

• If the submitted output f(x) is ultimately deemed valid, all such non-participating

verifiers are penalized, and a portion of their penalties is awarded to the prover.

Nevertheless, this design is based on the assumption that computing (and verifying)

H(f(x), Av) is computationally negligible. While this assumption holds for model inference
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tasks—where f(x) is a simple prediction vector or classification result, it fails for training

tasks, where f(x) represents an entire trained model and can be prohibitively large. In this

case, the Verifier’s Dilemma occurs to the prover in turn.

D.1.2 Proof-of-Learning (PoL): Lightweight Verification For Model
Training

Whereas the designs of zkML and opML mainly apply to ML model inference, additional

challenges occur in the development of verification protocols for ML training. Besides the

fact that the training process is substantially more computationally intensive than inference,

the output of the training task—the trained models—also have large sizes and even simple

operations on them (e.g., hashing or comparison) take non-negligible computational costs,

so that it would be harder to obtain “cheaply-shared ground truths” (like the H(f(x), Av)

discussed above) to bypass the Verifier’s Dilemma via cheap verification. Furthermore, the

re-execution method in opML would incur an at least 1x computational overhead. For

ML training tasks with heavy computational costs, we are still motivated to lower this

computational overhead.

In light of this, Jia et al. [96] propose a “vanilla” Proof-of-Learning (PoL) mechanism in

which the prover is supposed to train the model while leaving checkpoints during the training

process, and the verifier chooses the “most suspicious” parts of the training process to verify

via re-execution. Nevertheless, the vanilla PoL leaves a substantial gap to decentralized AI

verification as it assumes the credibility of verifiers (which is unrealistic especially in the

presence of the Verifier’s Dilemma), and its criteria of “most suspicious” parts is also subject

to adversarial attacks [100, 101], resembling the Goodhart’s Law (“When a measure becomes

a target, it ceases to be a good measure”, Goodhart [117]).

To adapt PoL for decentralized AI applications, Zhao et al. [4] introduce a refined

mechanism called incentive-secure PoL, which replaces selective re-execution with random

sampling. They demonstrate that, under mild assumptions, this protocol satisfies incentive-

security for rational provers: dishonest behavior is detected with high probability unless

the prover deviates during only a negligible fraction of training steps—insufficient to
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meaningfully affect performance or yield economic gain. This approach retains the

lightweight nature of PoL while aligning with the incentive constraints of decentralized

verification.

In addition, Zhao et al. [4] propose a capture-the-flag mechanism to further strengthen

verifier engagement. Here, flags—introduced as randomness by the prover—serve as

verifiable tokens that honest verifiers are incentivized to detect and report, even when all

proofs are valid. This incentivizes verifier efforts regardless of adversarial behavior.

The incentive-secure PoL protocol operates as follows:

• The prover runs a multi-stage stochastic training process (e.g., stochastic gradient

descent), recording model weights and commit hashes after each stage. At a subset of

stages, cryptographic flags are randomly inserted and committed using distinct random

seeds.

• The verifiers randomly choose a small fraction of stages and request the prover to

reveal the model weights before and after each selected stage.

• The prover responds by revealing the requested model weights.

• Verifiers check the correctness of these stages and privately commit to two reports: (1)

whether the proof is accepted and (2) which flags, if any, they detect.

• The prover reveals the list of inserted flags.

• Verifiers reveal their reports and detected flags.

• Provers and verifiers receive rewards or penalties based on the consistency of reports

and flag detections.

While Zhao et al. [4] do not conduct a formal game-theoretic analysis of the verifiers’

scoring rules, our study fills this theoretical gap—especially in the context where invalid

proofs can only be detected probabilistically. We provide a rigorous incentive analysis

that characterizes equilibrium behavior under this capture-the-flag framework, offering a

foundation for incentive-aligned training verification in decentralized AI.
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D.2 Discussion on Strong-SCP Peer Prediction Mechanisms

In the scope of peer prediction mechanisms, it is assumed that players report in a way

that maximizes their expected utilities w.r.t. their beliefs on other players’ reports. Hence,

different beliefs may lead to different estimations of utilities and different strategies. In the

canonical setting of individual non-colluding players, their beliefs are the Bayesian posteriors

conditioned on their observations, i.e. P (X−i|Xi).

When the collusions occur, nevertheless, the beliefs may differ in different settings as the

level of information and utility sharing may vary. In the notion of side-contract-proofness

(SCP) in the transaction fee mechanism design [41], it is assumed that the utilities are

transferable via side payments, so that rather than a local Pareto improvement that weakly

benefits everyone, a successful collusion only needs to improve the total utility of all players

in the colluding party.

While we inherit the SCP notion that allows side payments, in the context of information

elicitation, there can also be different settings on whether the players’ beliefs are shared

or not. In the weak-SCP notion, we consider the non-sharing-belief setting that the

players estimate their utilities based on their individual observations P (Xi|X−i), and we

show in Theorem 6.7 that weak-SCP can be achieved via our design that optimizes (δ,K)-

compactness. In contrast, a “strong-SCP” notion considers the sharing-belief setting with

players estimating their utilities based on the collective observations of the colluding party.

Namely, their beliefs on the reports inside the party are just their true reports, and their

beliefs on the reports outside the party are computed by P (X−C |XC ).

Nevertheless, a series of difficulties occur in the design for strong-SCP mechanisms.

D.2.1 Challenges in the Design of Strong-SCP Mechanisms

Free-riding at low noises. Consider the scenario when the observation noise is low, i.e.,

the players observe the true type θ with high probability. Then in a colluding party, one

observation is sufficient to secure a high confidence that other members would also observe

that result, which is likely to be the ground-truth. Hence, it is rational for other players
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to lazily report that result too, saving the observation cost (which is typically high in ML

verification contexts).

Preference towards agreeing reports. Even if the observation cost is low enough

to keep the players willing to do active observation, as a wide scope of practically used

peer prediction mechanisms, e.g., the correlated agreement (CA) mechanism [162] and

mutual-information-based mechanisms [139], typically rewards agreeing reports, there can

be a tendency that all colluding players report the same even if they observe differently,

violating strong-SCP properties. This challenge generalizes to the family of pairwise-scoring

mechanisms, in which the colluding party’s total utility is approximately linear to their

average report when n is large.1 Hence, it is impossible to design a pairwise-scoring

peer prediction mechanism that satisfies a “strict” strong-SCP property with sensitivity

guarantees (truthful reporting yields at least h more utility than reporting the same when

disagreement occurs). Formally, we have:

Theorem D.1. In an n-player decentralized verification game (DVG), for any pairwise-

scoring mechanism with a pairwise scoring matrix T such that the reward of player i is given

by

Ri(Zi,Z−i) = Z ′
iTZ−i, (D.1)

and −K ≤ T ≤ K, it holds that:

(i) For a collusion party C = {i1, · · · , ic} with observations XC = {Xi1 , · · · , Xic}, there

exists an all-same report Z∗
C = {Xi∗ , · · · , Xi∗} such that i∗ ∈ C and

EZC=Z∗
C , Z−C∼P (X−C |XC )

[∑
i∈C

Ri(X
∗
i ,Z−i)

]

≥ EZC=XC , Z−C∼P (X−C |XC )

[∑
i∈C

Ri(Xi,Z−i)

]
− h, (D.2)

in which

h =
2c(c− 1)

n− 1
K. (D.3)

1The approximate linearity property is actually not restricted to pairwise-scoring mechanisms, so the
results can potentially be further generalized in practice.
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(ii) If for any types s1, s2 ∈ S, s1 ̸= s2, it holds that

Ts1s1 ≥ Ts1s2 ,

i.e., the scoring rule favors agreement, then Eq. (D.2) holds for h ≤ 0.

Furthermore, if it is possible for the colluding party C to observe XC with two different

observations Xi, Xj s.t. TXiXi
> TXiXj

, then Eq. (D.2) holds for h < 0, indicating that the

mechanism is not strong-SCP.

The proof is deferred to Appendix D.6.10. We can interpret part (i) as that: when c≪ n,

the approximate linearity implies the impossibility to disincentivize reporting the same type

with significant incentive margins, as assuming the expected reward of an honest player is

Θ(K), the expected reward of the party is Θ(cN) ≫ h. Furthermore, part (ii) shows that

as long as the mechanism favors agreement (as most existing peer prediction mechanisms

typically do), this type of collusion will be strictly profitable, rendering them non-strong-

SCP. While we conjecture that it may be generally impossible to design a strong-SCP single-

task peer prediction mechanism under mild assumptions, Theorem D.1 shows that if it is

actually possible, we need to bypass the approximate linearity and may need extremely

tricky designs. On the other hand, other possible approaches to address the collusion issue

in the shared-belief setting may include:

• Multi-task settings: assigning different task sets to different players and make partial-

copying strategies unprofitable.

• Aggregation design: while failing to prevent collusion in the front-end elicitation phase,

it may still be possible to design aggregation mechanisms to minimize its impact to

the back-end decision-making (e.g., whether to accept the proof/block/etc.)

Nevertheless, we can notice that for the phenomenon that colluding players tend to copy

the same report, its practical effect on the functionality of back-end decision-making could

be rather “benign” as at least one of them did the honest observation, which still bypasses

the Verifier’s Dilemma and can be informationally sufficient particularly in the low-noise

scenario: in the back-end perspective, we can also regard such colluders as one player
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with more voting power in an almost unanimous voting. We leave detailed analyses and

discussions on these aspects for future work.

D.3 A Coupling Interpretation of Byzantine Reduction

D.3.1 Coupling Argument and Total Variation Distance

In probability theory and statistics, coupling is a technique to compare characteristics of

two distributions, especially when they are close to each other. In general, for two given

distributions D1, D2, we can construct two dependent random variables V1, V2 a with a joint

distribution P (V1, V2) such that the marginal distributions satisfy

P (V1) = D1, P (V2) = D2.

While the construction of the joint distribution P (V1, V2) is not unique, in the particular

case that D1 and D2 are close to each other, we would like to make V1 = V2 with a high

probability.

As an intuitive interpretation, we can regard that in the “main world” Ω1, a random event

V1 happens according to D1; in a parallel “alternative world” Ω2, the event is tampered to

V2 which has a different distribution D2. We can imagine that such magical manipulation

is costly, so that the manipulator would like to tamper as little as possible, i.e., minimize

P (V1 ̸= V2) as long as V2 ∼ D2. Actually, this model falls into the scope of optimal transport.

From optimal transport theories, it holds that

min
V1∼D1,V2∼D2

P (V1 ̸= V2) = TV (D1, D2). (D.4)

Example. An academic institute has recently recruited 50 new tenure-track assistant

professors, among which 5 are expected to get tenure, yielding a tenure rate of 10%. However,

due to a sudden cut in funding, the tenure rate has to be lowered to 6%, hence some of the

would-be decisions have to be changed. From Eq. (D.4), the minimum number of changed
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decisions is

50 · TV (Bern(0.10), Bern(0.06)) = 50 · 0.04 = 2. (D.5)

In fact, to change the fewest decisions, the tenure decisions for 2 unfortunate candidates

will be revoked.

D.3.2 Interpretation for Robust Peer Prediction

In the context of (Byzantine)-robust peer prediction for n players, we consider a mechanism

that is (δ,K)-compact for the environment ϕ̂ that has no rogue players. From Theorem 6.7

we know that this mechanism keeps the 0-IA incentive guarantee even if an arbitrary subset

of at most δ
2K

(n − 1) players, i.e. a δ
2K

fraction of other players, become malicious. For

simplicity of discussion, we assume n→∞.

We assume that in the main world, the environment is ϕ̂. Conditioned on player i observing

Xi, the (expected) distribution2 of other players’ observations is P (Xj|Xi, ϕ̂). From the

Byzantine robustness results, the 0-IA guarantee holds as long as at least an 1− δ
2K

fraction

of them report honestly.

Then, we consider the alternative world in which the environment is ϕ. Assuming that

the player i still observes Xi, the distribution of other players’ observations is P (Xj|Xi, ϕ).

From the coupling argument discussed above, a minimum of TVXj
(P (Xj|Xi, ϕ̂), P (Xj|Xi, ϕ))

fraction of other players have different observations between two worlds.

Now we assume that all other players report honestly in the alternative world, while in

the main world, they also report their observations in the alternative world. Then we see

that in the main world, an exact TVXj
(P (Xj|Xi, ϕ̂), P (Xj|Xi, ϕ)) fraction of other players

are reporting dishonestly. Hence in the main world, the 0-IA guarantee holds as long as

TVXj
(P (Xj|Xi, ϕ̂), P (Xj|Xi, ϕ)) ≤ δ

2K
.

On the other hand, in the alternative world all players are reporting honestly, but the

actual environment is ϕ instead of ϕ̂. Since all other players report identically in two worlds,

in the perspective of player i, the 0-IA guarantee still holds in the alternative world as long as
2We consider the distribution ensemble-wise, i.e., among all possible ground-truth θ’s. The term

“(conditional) distribution” in this part is always interpreted in this way.
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TVXj
(P (Xj|Xi, ϕ̂), P (Xj|Xi, ϕ)) ≤ δ

2K
. Hence we see that the Byzantine-robustness against

a δ
2K

fraction of malicious players implies the tolerance of a δ
2K

error of posterior beliefs.

An intuitive interpretation is that, from the perspective of a (self-centric) player i,

even if the actual posterior distribution of others’ observations differs from her belief, she

can interpret this difference as arising from some players reporting dishonestly. In this

interpretation, the player regards her belief (the ideal posterior distribution) as correct,

while the fraction of players causing the discrepancy corresponds to the error measured

by the total variation distance. This ensures that as long as the error remains below the

tolerance threshold δ
2K

, the robustness guarantee holds.

D.4 Demonstration of th PoL Benchmark

In this section, we empirically demonstrate the process of designing a CTF-PP mechanism,

for one set of parameters that is useful for practical interest.

D.4.1 Construction of the Scoring Rule

We consider the 2-verifier DVG which captures the case of one stage in [4]. Here, we set

the distribution θ as P (θ = F1) = P (θ = F2) =
1
4
, which means that half of all stages are

flagged. Then we consider the lossy-channel model in which µ1 = µ2 = 1
2
, as each verifier

independently chooses half of all stages 3 and each flag is detected with probability 1 when

verified. According to the CTF protocol, when a cheating stage is chosen by a verifier, it has

an 1
2

chance to be correctly detected, and a 1
4

chance to be observed as F1 or F2 respectively.

Hence, P (Xi|θ) is shown as in Table D.1, and assuming ϵ = 0, we compute the marginal

distribution of Xi as B⊥ = [3
4
, 1
8
, 1
8
, 0].

Then, assuming ϵ = 0, from P (Xi, X−i) =
∑

θ P (θ)P (Xi|θ)P (X−i|θ) we can compute the

joint probabilities P (X1, X2), as shown in Table D.2. We accordingly compute the post-

observation belief P (X2|X1) = P (X1,X2)
P (X1)

for X1 ̸= 1, and P (X2|X1 = 1) = P (X2|θ = 1),

getting the principal belief matrix B as Table D.3.
3It is significantly more than needed, but does work.
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Table D.1: P (Xi|θ), the observation distribution conditioned on θ.

Xi = 0 Xi = F1 Xi = F2 Xi = 1
θ = 0 1 0 0 0
θ = F1

1
2

1
2

0 0
θ = F2

1
2

0 1
2

0
θ = 1 1

2
1
8

1
8

1
4

Table D.2: Joint probabilities P (X1, X2) (ϵ = 0).

X2 = 0 X2 = F1 X2 = F2 X2 = 1
X1 = 0 5

8
1
16

1
16

0
X1 = F1

1
16

1
16

0 0
X1 = F2

1
16

0 1
16

0
X1 = 1 0 0 0 0

From the nature of the CTF mechanism, in which the observation of F1, F2 of 1 takes twice

the computational cost of a stage, we set c(F1) = c(F2) = c(1) = 2c. On the other hand, the

“observation” of a 0 has two cases: one is that the verifier has verified the stage that is not

cheated or flagged, which has a µ(1−η) = 1
4

probability, and one is that the verifier does not

verify the stage from the random verification protocol, which has a 1 − µ = 1
2

probability.

Hence, we have an “amortized” c(0) = 1
3
c. Without loss of generality, we set c = 1.

With the knowledge of B,B⊥ and c, Eqs. (6.11)-(6.14) are the constraints that a desirable

scoring rule for a CTF-PP mechanism should satisfy. For the robustness of our mechanism,

we do not want the payments to have extremely large absolute values. Hence, we construct

the linear program as:

minimize K

s.t. (6.11)-(6.14), −K ≤ T ≤ K.

Table D.3: The principal belief matrix B.

X2 = 0 X2 = F1 X2 = F2 X2 = 1
X1 = 0 5

6
1
12

1
12

0
X1 = F1

1
2

1
2

0 0
X1 = F2

1
2

0 1
2

0
X1 = 1 1

2
1
8

1
8

1
4
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We set a margin of δ = 0.2, and compute a numerical solution to this LP, getting a scoring

rule as shown in Table D.4.

Table D.4: TZiZ−i
= Ri(Zi, Z−i) as a numerical solution.

Z−i = 0 Z−i = F1 Z−i = F2 Z−i = 1
Zi = 0 +2.0690 −7.1451 −7.1451 −2.2507
Zi = F1 −2.0446 +6.4446 −4.7421 −2.0022
Zi = F2 −2.0446 −4.7421 +6.4446 −2.0022
Zi = 1 −2.2000 +5.8000 +5.8000 +7.4000

D.4.2 Evaluation

With this scoring rule, given verifier −i acts honestly, we report the expected utility of

verifier i is in Table D.5, assuming ϵ = 0, showing that the verifier gets a positive expected

utility if and only if she verifies and reports honestly.

Furthermore, we consider the case ϵ > 0. We plot the maximum expected utility of

dishonest actions and the minimum expected utility of honest actions in Figure D.1. From

the plot, we show that the introduction of the margin keeps the IR, UniIC and NFL properties

of our mechanism as long as ϵ < 0.045. Hence, we demonstrate that our design of the CTF-

PP mechanism for the 2-verifier DVG can incentivize honest verification even if there is no

dishonest prover, thus bypassing the Verifier’s Dilemma and achieving a pure-strategy Nash

equilibrium that the prover and verifiers simultaneously act honestly.

Table D.5: Verifier’s expected utility, ϵ = 0.

Reporting 0 Reporting F1 Reporting F2 Reporting 1
Observing 0 +0.2000 −1.8953 −1.8953 −1.2000
Observing F1 −4.5381 +0.2000 −5.3933 −0.2000
Observing F2 −4.5381 −5.3933 +0.2000 −0.2000
Observing 1 −3.3144 −3.3100 −3.3100 +0.2000
Uninformed −0.2345 −1.3206 −1.3206 −0.2000
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Figure D.1: Verifier’s expected utility, ϵ > 0.

D.5 Additional Experiments

In this part, we report the results of the second experiment as described in Section 6.7.1.

In this experiment, we consider the case of a 2-verifier DVG, in which the peer is honest

but the actual prior has an ϵ TV distance from the principal distribution, simulating the

case in which a small fraction of proofs is dishonest.

As the PMI baseline has been shown as the most competitive among the baselines in

Section 6.7, and SA and DMI are infeasible even for the noise-free case in the PoL benchmark,

in the PoL benchmark we mainly compare our design with PMI. To show the potential of re-

scaling PMI scoring rules for an incentive margin (and robustness), we introduce a variation

of the PMI mechanism:

• PMI-Oracle (PMI-O): The scoring rule is computed with the actual prior (which should

not have been accessible in practice) and scaled accordingly.

For convenience in the computation of utilities, we truncate the infinite entries to ±20 in

the Log and PMI scoring rules. Since we have already shown in Section 6.7 that the DMI

mechanism always has the same adversarial utility as honest utility (which is not desired in

our setting), we omit the experiments for the DMI mechanism.

Here, we let ϵ = 0.01 and ϵ = 0.03, and show the results for Coin and PoL benchmarks in

Tables D.6-D.9.

From the experiment results, we can see that the introduction of δ margin can ensure

positive honest utility and negative dishonest utility even in the presence of inaccurate prior
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Table D.6: Experiment 2, Coin Benchmark, ϵ = 0.01

Budget Honest Utility Lazy Utility Adversarial Utility
Ours (δ = 0) 1.00 −0.004 0.04 −2.13

Ours (δ = 0.2) 1.20 0.20 −0.15 −2.67
SA 1.57 0.57 0.08 −4.18
Log 1.39 0.39 0.07 −2.64
PMI 1.11 0.11 0.04 −2.37

PMI-O 1.12 0.12 0.00 −2.37

Table D.7: Experiment 2, Coin Benchmark, ϵ = 0.03

Budget Honest Utility Lazy Utility Adversarial Utility
Ours (δ = 0) 0.99 −0.01 0.12 −2.12

Ours (δ = 0.2) 1.20 0.20 −0.04 −2.67
SA 1.57 0.57 0.24 −4.17
Log 1.41 0.41 0.20 −2.62
PMI 1.09 0.09 0.12 −2.37

PMI-O 1.16 0.16 0.00 −2.51

of an ϵ = 0.03 TV distance. In the Coin baseline, our design with δ = 0.2 pays lower budget

than SA and Log mechanisms, while the PMI-O baseline can achieve slightly lower budget

than our design (with carefully tuned affine transformations assuming that the ϵ is known in

advance). However, in the trickier PoL benchmark in which the Verifier’s Dilemma actually

occurs, our design yields better robustness and lower budgets than the PMI mechanism, even

if we allow the PMI mechanism to optimally adjust the scaling factors with the accurate ϵ.

Hence, we have shown that our design achieves a more robust and cost-efficient solution for

the Verifier’s Dilemma than existing peer prediction mechanisms listed above.
Table D.8: Experiment 2, PoL Benchmark, ϵ = 0.01

Budget Honest Utility Lazy Utility Adversarial Utility
Ours (δ = 0) 0.75 −0.004 0.00 −2.85

Ours (δ = 0.2) 0.95 0.20 −0.20 −3.30
PMI 1.24 0.49 0.01 −6.99

PMI-O 1.24 0.49 0.00 −7.98
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Table D.9: Experiment 2, PoL Benchmark, ϵ = 0.03

Budget Honest Utility Lazy Utility Adversarial Utility
Ours (δ = 0) 0.74 −0.01 0.00 −2.83

Ours (δ = 0.2) 0.94 0.19 −0.18 −3.28
PMI 1.22 0.47 0.02 −6.87

PMI-O 1.21 0.46 0.00 −7.64

D.6 Deferred Proofs

D.6.1 Proof of Theorem 5.1

Assume we have such a mechanism. By the definition of Nash equilibrium, we consider a

fixed verifier. Given that the prover and all other verifiers act honestly, that verifier should

be incentivized to do the honest verification.

Since the prover is honest, when that verifier performs honest verification, the result

should always be “Success”. However, suppose the verifier simply reports “Success” without

verification. In that case, the outcome is the same but the verifier saves the verification cost,

so the verifier is incentivized to deviate from the honest strategy.

That leads to a contradiction, so no such mechanism exists.

D.6.2 Proof of Theorem 6.2

Notice that if B is invertible, for any given W : S2 → R, we can compute a T = (B−1W )′

that satisfies W = BT ′. Since we have

B⊥y = P (X−i = y) (D.6)

=
∑
x∈S

P (Xi = x) · P (X−i = y|Xi = x) (D.7)

=
∑
x∈S

B⊥x · Bxy, (D.8)

It holds that B⊥ = B⊥B. Hence, W⊥ = B⊥T
′ = B⊥BT

′ = B⊥W . Since B⊥ ≥ 0, W⊥ is a

convex combination of rows in W . Therefore, we only need to construct a W that satisfies
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Eq. (6.11) with non-diagonal entries small enough.

Here, for a constant M > 0 large enough, we construct W as:

Wxx = c(x) + δ, ∀x ∈ S; (D.9)

Wxy = −M, ∀x ∈ S, y ∈ S − {x}. (D.10)

Then,

W⊥y =
∑
x∈S

B⊥xWxy (D.11)

= B⊥yWyy +
∑

x∈S−{y}

B⊥xWxy (D.12)

= B⊥y(c(y) + δ)− (1− B⊥y)M. (D.13)

Since the existence of flags introduces randomness in the observation, we have max{B⊥} <

1. Hence, denote B∗
⊥ = max{B⊥y}, we only need to let

M ≥ B∗
⊥ · (c(y) + δ) + δ

1− B∗
⊥

, (D.14)

Then the required constraints of Eqs. (6.11)-(6.14) are satisfied with a margin of δ.

Then we consider the scenario that ϵ > 0 but is small enough. In this case, define B(ϵ)

and B⊥(ϵ) as the belief matrix and blind-belief matrix considering the influence of ϵ. We

can see that for any x ̸= 1, since P̃ (Xi = x) > 0, the influences of ϵ on P (X−i|Xi = x) and

P (X−i) are upper bounded by O(ϵ), and because θ ̸= 1 ⇒ Xi ̸= 1, Eq. (6.6) always holds

for any ϵ. Therefore, the margin of δ ensures that the constraints are not violated as long

as ϵ0 is small enough.

Finally, let T = (B−1W )′, then T is a scoring rule that satisfies the requirements.
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D.6.3 Proof of Proposition 6.3

In the 2-verifier DVG, By definition Bxy = P (X−i = y|Xi = x). We sort the elements of

S in the order (0, F1, · · · , Fm, 1). For convenience, we define the observation matrix (aka.

confusion matrix) O and inference matrix E as:

Oxy = P (Xi = y|θ = x), (D.15)

Exy = P (θ = y|Xi = x). (D.16)

From the lossy-channel model, we immediately see that O is an upper triangular matrix

with non-zero diagonals, so O is invertible.

Furthermore, given ϵ = 0, we can see that:

• If Xi = 0, then the ground truth θ may be 0 or any flag Fj, and P (θ = 0|Xi = 0) > 0.

• If Xi = Fj, then θ = Fj.

• If Xi = 1, then θ = 1.

Hence, E is a lower triangular matrix with non-zero diagonals, so E is invertible. Then,

because Xi, X−i are independent conditioned on θ, we have

BXiX−i
= P (X−i|Xi) (D.17)

=
∑
θ∈S

P (θ|Xi)P (X−i|θ) (D.18)

=
∑
θ∈S

EXiθ ·OθX−i
. (D.19)

Therefore, B = EO.

Since E,O are invertible, we deduce that B is invertible.
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D.6.4 Proof of Theorem 6.4

In the context of Bayesian Nash equilibrium, we can assume each verifier j ̸= i is honest,

i.e., Z−i = X−i. Hence, given that verifier i observes Xi ∈ S ∪ {⊥} and reports Zi ∈ S, the

interim expected reward is:

rXi
(Zi) = E

[
Z ′

iTX−i

∣∣∣Xi

]
(D.20)

= Z ′
iT · E

[
X−i

∣∣∣Xi

]
(D.21)

= Z ′
iT · E

[ 1

n− 1

∑
j ̸=i

Xj

∣∣∣Xi

]
(D.22)

=
1

n− 1

∑
j ̸=i

Z ′
iTE

[
Xj

∣∣∣Xi

]
(D.23)

=
1

n− 1

∑
j ̸=i

Z ′
iT
∑
Xj∈S

P (Xj|Xi)Xj (D.24)

=
1

n− 1

∑
j ̸=i

∑
Xj∈S

P (Xj|Xi)TZiXj
. (D.25)

With similar arguments as Section 6.4, we assume ϵ = 0, and P (Xj|Xi) is the (i, j)-th

entry of the principal belief matrix B for any j ̸= i. Hence, we have

rXi
(Zi) =

1

n− 1

∑
j ̸=i

∑
Xj∈S

P (Xj|Xi)TZiXj
(D.26)

=
∑
Xj∈S

BXiXj
TZiXj

(D.27)

= (BT ′)XiZi
. (D.28)

Hence, the linear program of Eqs. (6.11-6.14) works equivalently for the n-verifier DVG

when we use the linear average mechanism as Eq. (6.15) with exactly the same incentive

structure. So any incentive property satisfied in the 2-verifier mechanism T is also satisfied

in the linear average mechanism in Eq. (6.15).
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D.6.5 Proof of Theorem 6.5

We first observe that any feasible solution of LP1(B,B⊥, c, δ) can be constructed with feasible

solutions of LP1(B,B⊥, c, 0) and LP1(B,B⊥, 0, 1), i.e.,

Observation 2. If (Kc, Tc) is a feasible solution of LP1(B,B⊥, c, 0) and (Kδ, Tδ) is a feasible

solution of LP1(B,B⊥, 0, 1), then (Kc+δKδ, Tc+δTδ) is a feasible solution of LP1(B,B⊥, c, δ).

Hence, we can estimate upper bounds of optimal Kc and Kδ separately. Here we denote

∥ · ∥2 as the matrix ℓ2-norm, and denote W = BT ′. From the assumption in Theorem 6.2

that B is invertible, T can be constructed as (B−1W )′ and it holds that ∀x, y ∈ S, |Txy| ≤

∥T∥2 = ∥(B−1W )′∥2 ≤ ∥B−1∥2 · ∥W∥2. Hence, we can estimate the upper bounds on

entrywise maximums of T via ℓ2 norms of W , respectively.

For LP1(B,B⊥, c, 0), if we construct

Wxy =

c, y = x;

− B⊥y

1−B⊥y
· c, y ̸= x.

(D.29)

Then the corresponding Tc = (B−1W )′ obviously satisfies conditions (6.23-6.24). For

condition (6.25), we have

(B⊥W )y =
∑
x∈S

B⊥xWxy (D.30)

= B⊥yWyy +
∑

x∈S−{y}

B⊥xWxy (D.31)

= B⊥y · 1 + (1− B⊥y) ·
(
− B⊥y

1− B⊥y

)
(D.32)

= 0. (D.33)

So Tc is feasible for LP1(B,B⊥, c, 0), and we analyze Kc later.

Before analysis for LP1(B,B⊥, 0, 1), we prove a lemma:

Lemma D.1. B′
⊥ is an eigenvector of B′ with eigenvalue 1, i.e., B⊥B = B⊥.
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Proof. Proof

Let j be an arbitrary verifier other than j. From the discussion of the uninformed strategy

(in Section 6.3), we have

B⊥y = P (Xj = y|Xi = ⊥) (D.34)

= P (Xj = y). (D.35)

On the other hand,

(B⊥B)y =
∑
x∈S

B⊥xBxy (D.36)

=
∑
x∈S

P (Xi = x) · P (Xj = y|Xi = x) (D.37)

=
∑
x∈S

P (Xi = x,Xj = y) (D.38)

= P (Xj = y). (D.39)

Hence we have B⊥y = (B⊥B)y for ∀y ∈ S, so B⊥B = B⊥.

□ Q.E.D.

From Lemma D.1, the LP1(B,B⊥, 0, 1) can be reformulated as:

LP2(B,B⊥, 0, 1) :

minimize K (D.40)

s.t. |B−1W | ≤ K, (D.41)

Wxx ≥ 1, ∀x ∈ S (D.42)

Wxy ≤ −1, ∀x ∈ S, y ∈ S − {x} (D.43)

B⊥W ≤ −1. (D.44)
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Here, we can construct

Wxy =

1, y = x;

−1+B⊥y

1−B⊥y
, y ̸= x.

From the construction we immediately see that conditions (D.42-D.43) are satisfied. For

condition (D.44), we have

(B⊥W )y =
∑
x∈S

B⊥xWxy (D.45)

= B⊥yWyy +
∑

x∈S−{y}

B⊥xWxy (D.46)

= B⊥y · 1 + (1− B⊥y) ·
(
− 1 + B⊥y

1− B⊥y

)
(D.47)

= −1. (D.48)

Hence, the W is feasible for LP2(B,B⊥, 0, 1). Now we estimate an upper bound on ∥W∥2.

We first show a lemma:

Lemma D.2. For any matrix A,

∥A∥2 ≤
√
∥A∥1∥A∥∞. (D.49)

Proof. Proof Denote A∗ as the conjugate transpose of A, which is equal to A′ when A is

real, and denote λmax(·) as the maximum eigenvalue. Then it holds that

∥A∥2 =
√
λmax(A∗A). (D.50)

251



Because the maximum eigenvalue is a lower bound on the ℓ∞ norm, we have

λmax(A
∗A) ≤ ∥A∗A∥∞ (D.51)

≤ ∥A∗∥∞∥A∥∞ (D.52)

= ∥A∥1∥A∥∞. (D.53)

Hence we prove ∥A∥2 ≤
√
∥A∥1∥A∥∞.

□ Q.E.D.

Now we sort {B⊥y : y ∈ S} as p1 ≥ p2 ≥ · · · ≥ pk, in which k = |S| = m + 2. Then we

have

∥W∥1 = max
y∈S

∑
x∈S

|Wxy| (D.54)

= max
1≤j≤k

{
1 + (k − 1)

1 + pj
1− pj

}
(D.55)

= 1 + (k − 1)
1 + p1
1− p1

(D.56)

= k + (2k − 2)
p1

1− p1
, (D.57)

and

∥W∥∞ = max
x∈S

∑
y∈S

|Wxy| (D.58)

= max
1≤i≤k

{
1 +

∑
j ̸=i

1 + pj
1− pj

}
(D.59)

≤
k∑

i=1

1 + pj
1− pj

(D.60)

= k + 2
k∑

i=1

pj
1− pj

(D.61)

≤ k + 2
k∑

i=1

pj
1− p1

(D.62)

= k +
2

1− p1
. (D.63)
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Therefore, we have

∥W∥2 ≤
√(

k + (2k − 2)
p1

1− p1

)(
k +

2

1− p1

)
(D.64)

and

Kδ = ∥B−1∥2 ·
√(

k + (2k − 2)
p1

1− p1

)(
k +

2

1− p1

)
(D.65)

is feasible for LP2(B,B⊥, 0, 1).

Similarly, denote W̃ as the matrix given by (D.29), then we have

∥W̃∥1 = max
y∈S

∑
x∈S

|W̃xy| (D.66)

= max
1≤j≤k

{
1 + (k − 1)

pj
1− pj

}
(D.67)

= 1 + (k − 1)
p1

1− p1
(D.68)

and

∥W̃∥∞ = max
x∈S

∑
y∈S

|Wxy| (D.69)

= max
1≤i≤k

{
1 +

∑
j ̸=i

pj
1− pj

}
(D.70)

≤ max
1≤i≤k

{
1 +

∑
j

pj
1− pj

}
(D.71)

≤ 1 +
∑
j

pj
1− p1

(D.72)

= 1 +

∑
j pj

1− p1
(D.73)

= 1 +
1

1− p1
(D.74)

Therefore, we have

∥W̃∥2 ≤
√(

1 + (k − 1)
p1

1− p1

)(
1 +

1

1− p1

)
(D.75)
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and

Kc = ∥B−1∥2 ·
√(

1 + (k − 1)
p1

1− p1

)(
1 +

1

1− p1

)
. (D.76)

Hence, Kc+ δKδ is feasible for LP1(B,B⊥, c, δ). Because our constructions for both parts

make the equality hold in (6.23), the final construction makes the equality hold naturally.

D.6.6 Proof of Theorem 6.7

For the 0-IA property, according to Proposition 6.6 we only need to equivalently consider the

case of |M∗| + |C∗| malicious players in the canonical Byzantine setting. From Lemma 6.1,

the mechanism is 0-IA even if up to δ
2N

(n − 1) malicious players are considered. Since

|M∗|+ |C∗| ≤ δ
2N

(n− 1), it is indeed 0-IA.

Then we consider the colluding party. If all players in C∗ act honestly, since the mechanism

is (δ,K)-compact, each of them would get an interim utility of at least δ if there were no

malicious players. As there are M∗ malicious players and each can perturb rXi
(Zi) by at

most 2N
n−1

, the actual interim utility of each player is at least δ− 2N
n−1
|M∗|, so the total interim

utility of the colluding party is

uhonestC∗ ≥ |C∗| ·
(
δ − 2N

n− 1
|M∗|

)
. (D.77)

Assuming the mechanism is not weak-SCP, then there exists a case in which 1 ≤ d ≤ |C∗|

players in C∗ act dishonestly and increase the total interim utility of the colluding party.

Hence, compared to the case that all players in C∗ act honestly, we can model this scenario

as colluding players in C∗ change their actions, and consider the increment of their utilities.

As we assumed, d players in C ′
∗ change their actions from honest to dishonest. Since there

are now at most |M∗| + d dishonest players, the interim utility of each player in C ′
∗ is at

most −δ + 2N
n−1

(|M∗|+ d); on the other hand, d players changing their actions may increase

the interim utility of each player in C∗ − C ′
∗ by at most 2N

n−1
d. Hence, the increment of the
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total interim utility in C∗ is

∆ ≤ d ·
(
(−δ + 2N

n− 1
(|M∗|+ d))− (δ − 2N

n− 1
|M∗|)

)
+ (|C∗| − d) ·

2N

n− 1
d (D.78)

=

(
−2δ + 2N

n− 1
(2|M∗|+ |C∗|)

)
d (D.79)

≤
(
−2δ + 4N

n− 1
(|M∗|+ |C∗|)

)
d (D.80)

=

(
−2δ + 4N

n− 1
· δ

2N
(n− 1)

)
d (D.81)

= 0. (D.82)

Therefore, we show that the deviation cannot increase the colluding party’s total utility,

i.e. the mechanism is SCP when |M∗|+ |C∗| ≤ δ
2N

(n− 1).

D.6.7 Proof of Theorem 6.8

From Theorem 6.5 we see that for any δ ≥ 0, LP1 has a feasible solution with the equality

in Eq. (6.23) holding and objective value

K ≤ ∥B−1∥2(c1 · g1(k, p1) + δ · g2(k, p1)). (D.83)

To ensure a compactness of at least η, we only need δ ≥ ηK.
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In fact, assuming η < 1
g2(k,p1)∥B−1∥2 , if we let δ = ηc1g1(k,p1)∥B−1∥2

1−ηg2(k,p1)∥B−1∥2 as in Eq. (6.29), then

δ − ηK ≥ ηc1g1(k, p1)∥B−1∥2
1− ηg2(k, p1)∥B−1∥2

− η · ∥B−1∥2(c1g1(k, p1) + δ · g2(k, p1)) (D.84)

=
ηc1g1(k, p1)∥B−1∥2 − η · ∥B−1∥2(c1g1(k, p1) + δg2(k, p1))(1− ηg2(k, p1)∥B−1∥2)

1− ηg2(k, p1)∥B−1∥2
(D.85)

=
−η∥B−1∥2 · (−c1g1(k, p1)ηg2(k, p1)∥B−1∥2 + δg2(k, p1)− ηδ(g2(k, p1))2∥B−1∥2)

1− ηg2(k, p1)∥B−1∥2
(D.86)

=
−ηg2(k, p1)∥B−1∥2 · (−ηc1g1(k, p1)∥B−1∥2 + δ · (1− ηg2(k, p1)∥B−1∥2))

1− ηg2(k, p1)∥B−1∥2
(D.87)

=
−ηg2(k, p1)∥B−1∥2
1− ηg2(k, p1)∥B−1∥2

· (−ηc1g1(k, p1)∥B−1∥2 + ηc1g1(k, p1)∥B−1∥2) (D.88)

= 0. (D.89)

Hence, the η compactness is satisfied.

Now we only need to show that µ = δ. Actually, whenever a verifier gets an observation x

she pays the cost of c(x), and because the equality holds in Eq. (6.23), she gets an expected

reward of c(x) + δ over the (conditional) distribution of other verifiers’ observations. Hence

we see that the expected payment to any verifier is δ plus the expected verification cost, and

that µ = δ holds indeed.

D.6.8 Proof of Lemma 6.2

We only need to prove that∣∣∣∣∣∣
∑
Xj∈S

P (Xj|Xi, ϕ̂)TZiXj
−
∑
Xj∈S

P (Xj|Xi, ϕ)TZiXj

∣∣∣∣∣∣ ≤ δ.
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In fact, ∣∣∣∣∣∣
∑
Xj∈S

P (Xj|Xi, ϕ̂)TZiXj
−
∑
Xj∈S

P (Xj|Xi, ϕ)TZiXj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
Xj∈S

TZiXj

(
P (Xj|Xi, ϕ̂)− P (Xj|Xi, ϕ)

)∣∣∣∣∣∣ (D.90)

≤
∑
Xj∈S

|TZiXj
| ·
∣∣∣P (Xj|Xi, ϕ̂)− P (Xj|Xi, ϕ)

∣∣∣ (D.91)

≤
∑
Xj∈S

N ·
∣∣∣P (Xj|Xi, ϕ̂)− P (Xj|Xi, ϕ)

∣∣∣ (D.92)

= N ·
∑
Xj∈S

∣∣∣P (Xj|Xi, ϕ̂)− P (Xj|Xi, ϕ)
∣∣∣ . (D.93)

From the definition of TV distance, we have

TVXj
(P (Xj|Xi, ϕ̂), P (Xj|Xi, ϕ))

=
1

2

∑
Xj∈S

∣∣∣P (Xj|Xi, ϕ̂)− P (Xj|Xi, ϕ)
∣∣∣ . (D.94)

Hence,

N ·
∑
Xj∈S

∣∣∣P (Xj|Xi, ϕ̂)− P (Xj|Xi, ϕ)
∣∣∣

= 2N · TVXj
(P (Xj|Xi, ϕ̂), P (Xj|Xi, ϕ)) (D.95)

≤ 2N · δ

2N
(D.96)

= δ. (D.97)

Here we prove Lemma 6.2.

D.6.9 Proof of Theorem 6.10

From Theorem 6.4, without loss of generality we consider the 2-verifier DVG. Because

environments ϕ, ϕ̂ are identical except for priors, we define the environmental constraint
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Φ as all environments identical to ϕ except for different priors. Then for φ ∈ Φ, P (Xi|θ, φ)

is a constant irrelevant to φ and we regard Θs = P (θ = s, φ) as the variable. We omit the

φ for simplicity in the following parts of the proof. Then, we can see that

P (X−i|Xi) =

∑
θ P (θ)P (Xi|θ)P (X−i|θ)∑

θ P (θ)P (Xi|θ)
(D.98)

is a function of Θ = {Θs}. We denote Q : S → RS as:

QX−i
(Xi,Θ) = P (X−i|Xi).

Then, we derive stability of QX−i
(Xi, ·) via ℓ1-Lipschitz properties. While in Eq. (D.98) there

is a natural constraint that
∑

s∈S Θs = 1, here we relax this constraint and allow arbitrary

Θ ∈ RS for convenience in analysis. We have

∂QX−i
(Xi,Θ)

∂Θs

=
P (Xi|θ = s)P (X−i|θ = s)∑

θ P (θ)P (Xi|θ)
−
∑

θ P (θ)P (Xi|θ)P (X−i|θ) · P (Xi|θ = s)

(
∑

θ P (θ)P (Xi|θ))2

(D.99)

=
P (Xi|θ = s)P (X−i|θ = s)

P (Xi)
− P (Xi, X−i) · P (Xi|θ = s)

P 2(Xi)
. (D.100)

Hence, for fixed Xi, it holds that

∑
X−i∈S

∣∣∣∣∂QX−i(Xi,Θ)

∂Θs

∣∣∣∣ ≤ ∑
X−i∈S

∣∣∣∣P (Xi|θ = s)P (X−i|θ = s)

P (Xi)

∣∣∣∣+ ∑
X−i∈S

∣∣∣∣P (Xi, X−i) · P (Xi|θ = s)

P 2(Xi)

∣∣∣∣
(D.101)

=
P (Xi|θ = s)

P (Xi)
+

P (Xi) · P (Xi|θ = s)

P 2(Xi)
(D.102)

=
2P (Xi|θ = s)

P (Xi)
(D.103)

≤ 2

P (Xi)
. (D.104)

Therefore, we deduce that Q(Xi,Θ) is 2
P (Xi)

-ℓ1-Lipschitz at point Θ, in which 2
P (Xi)

is a

function of Θ because different priors result in different marginal probabilities of observations.

Now we denote that the priors in ϕ, ϕ̂ as Θ1,Θ2, and consider the path ω : [0, 1] → RS
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from Θ1 to Θ2 as

ω(t) = (1− t)Θ1 + tΘ2,

and denote the environmental variable corresponding to ω(t) as φt. Then, because P (Xi) is

a linear function of {P (θ)}, it holds that:

P (Xi|φt) = (1− t)P (Xi|ϕ) + tP (Xi|ϕ̂) (D.105)

≥ min{P (Xi|ϕ), P (Xi|ϕ̂)}. (D.106)

Hence, we deduce that Q(Xi, ·) is max{ 2
P (Xi|ϕ) ,

2

P (Xi|ϕ̂)
}-ℓ1-Lipschitz on ω.

For Xi ∈ S∗, from the assumption that TVθ(P (θ|ϕ), P (θ|ϕ̂)) ≤ δ
4N
·

minXi∈S∗,φ∈{ϕ,ϕ̂} {P (Xi|φ)}, we see that the ℓ1 length of ω is at most δ
2N
·

minXi∈S∗,φ∈{ϕ,ϕ̂} {P (Xi|φ)}. From the Lipschitz properties, we have

∥Q(Xi,Θ1)−Q(Xi,Θ2)∥1 ≤
δ

N
. (D.107)

Notice that the TV distance between two distributions is 1
2

times the ℓ1 distance between

the corresponding probability vectors, hence

TVX−i
(P (X−i|Xi, ϕ), P (X−i|Xi, ϕ̂)) ≤

δ

2N
. (D.108)

For Xi = 1, i.e. the observation is “Dishonest”, from the assumption that P (Xi = 1|θ ̸=

1) = 0 we deduce that Xi = 1 implies θ = 1. Hence, P (X−i|P (Xi = 1)) = P (X−i|θ = 1) is a

known constant (by the modeling in Section 6.3) and is not affected by the inaccurate prior

distributions of θ, so Eq. (D.108) also holds for Xi = 1.

According to Theorem 6.9, Eq. (D.108) implies that the mechanism is 0-IA for environment

ϕ.
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D.6.10 Proof of Theorem D.1

(1) From Eq. (D.1) we have

∑
i∈C

Ri(Zi,Z−i) =
∑
i∈C

1

n− 1

(∑
j ̸=i

Z ′
iTZj

)
(D.109)

=
1

n− 1

∑
i∈C

∑
j /∈C

Z ′
iTZj +

∑
j∈C \{i}

Z ′
iTZj

 (D.110)

=
c(n− c)
n− 1

ZC
′
TZ−C +

1

n− 1

∑
i∈C

∑
j∈C \{i}

Z ′
iTZj, (D.111)

in which ZC ,Z−C are the average reports of players inside and outside the colluding party
C , respectively. Hence, we have

EZ−C∼P (X−C |XC )

[∑
i∈C

Ri(Zi,Z−i)

]
= ZC

′ · c(n− c)

n− 1
EZ−C∼P (X−C |XC )

[
TZ−C

]
+

1

n− 1

∑
j∈C \{i}

Z ′
iTZj .

(D.112)

We notice that for fixed n, c, scoring matrix T , and shared belief P (X−C |XC ), the term

c(n− c)
n− 1

EZ−C∼P (X−C |XC )

[
TZ−C

]
is a constant and ZC

′ · c(n−c)
n−1

EZ−C∼P (X−C |XC )

[
TZ−C

]
is linear to ZC , the average of all players’

reports in C . Hence, we have

ZC
′ · c(n− c)

n− 1
EZ−C∼P (X−C |XC )

[
TZ−C

]
≤ max

i∈C

{
Z′
i ·
c(n− c)
n− 1

EZ−C∼P (X−C |XC )

[
TZ−C

]}
.

(D.113)

Let i∗ be the i ∈ C that yields the maximum in RHS. On the other hand, we have

1

n− 1

∑
i∈C

∑
j∈C \{i}

Z ′
iTZj =

1

n− 1

∑
i∈C

∑
j∈C \{i}

TZiZj
. (D.114)
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Since ∀TZiZj
∈ [−N,N ],

1

n− 1

∑
i∈C

∑
j∈C \{i}

Z ′
iTZj ∈

[
−c(c− 1)

n− 1
N,

c(c− 1)

n− 1
N

]
. (D.115)

Let ∀Zi = Xi∗ and h = 2c(c−1)
n−1

N , we can see that Eq. (D.2) holds.

(2) We let ∀Zi = Xi. Since for any Xi ̸= Xj it holds that TXiXi
≥ TXiXj

, and we first adopt

the assumption that ∃i, j ∈ C s.t. TXiXi
> TXiXj

, we have

1

n− 1

∑
i∈C

∑
j∈C \{i}

Z ′
iTZj =

1

n− 1

∑
i∈C

∑
j∈C \{i}

TXiXj
(D.116)

<
1

n− 1

∑
i∈C

∑
j∈C \{i}

TXiXi
(D.117)

=
c− 1

n− 1

∑
i∈C

TXiXi
(D.118)

=
c− 1

n− 1

∑
i∈C

X ′
i · diag(T ) (D.119)

= XC
′ · c(c− 1)

n− 1
diag(T ). (D.120)

Conditioned on the players in C all actively verify and observe XC , their observation costs

are fixed, and their expected total reward is:

r(XC ) = XC
′ · c(n− c)

n− 1
EX−C∼P (X−C |XC )

[
TX−C

]
+

1

n− 1

∑
i∈C

∑
j∈C \{i}

TXiXj
. (D.121)

On the other hand, we let k = |S| be the number of types and define f : Rk → R s.t.

f(Y ) = Y ′ · c(n− c)
n− 1

EX−C∼P (X−C |XC )

[
TX−C

]
+ Y ′ · c(c− 1)

n− 1
diag(T ). (D.122)
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From the arguments above, it holds that

r(XC ) < f(XC ). (D.123)

Since f(·) is a linear function, we have

f(XC ) ≤ max
i∈C

f(Xi). (D.124)

Let i∗ = arg maxi∈C f(Xi), then we deduce that

r(XC ) < f(Xi∗). (D.125)

Therefore, for the all-same report Z∗
C = {Xi∗ , · · · , Xi∗}, we have

r(Z∗
C ) = Z∗

C

′ · c(n− c)
n− 1

EX−C∼P (X−C |XC )

[
TX−C

]
+

1

n− 1

∑
i∈C

∑
j∈C \{i}

TZ∗
i Z

∗
j

(D.126)

= X ′
i∗ ·

c(n− c)
n− 1

EX−C∼P (X−C |XC )

[
TX−C

]
+

1

n− 1

∑
i∈C

∑
j∈C \{i}

TXi∗Xi∗ (D.127)

= X ′
i∗ ·

c(n− c)
n− 1

EX−C∼P (X−C |XC )

[
TX−C

]
+X ′

i∗ ·
c(c− 1)

n− 1
diag(T ) (D.128)

= f(Xi∗) (D.129)

> r(XC ). (D.130)

Hence we show that such collusion is strictly profitable in the shared-belief setting,

implying that the mechanism is not strong-SCP.

If we do not adopt the assumption that ∃i, j ∈ C s.t. TXiXi
> TXiXj

, then Eq. (D.117)

still holds with “≤”, and all the following strict inequalities become non-strict, implying that

Eq. (D.2) holds with h ≤ 0.
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